Intel Draft for Review

Intel® Platform Innovation Framework
for EFI

Driver Execution Environment

Core Interface Specification (DXE CIS)

A Foundation Specification

Draft for Review

Version 0.9
September 16, 2003

In

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © 1999-2003, Intel Corporation.

September 2003 Version 0.9

intel

Draft for Review

Revision History

Revision Revision History Date
0.9 First public release. 9/16/03
Added "A Foundation Specification" line to the title page. No other 6/30/04
changes, so the revision number and date were not changed.
Version 0.9 September 2003

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

iv September 2003 Version 0.9

n
I ntel Draft for Review

Contents

1 INtrodUCtiono e 1
OVEBIVIBW. ...ttt e et e e e e ettt e e e e e e e e e e e eeeaeae e e e e eeeeeeeeeeeassnnnn e e aeeaaeeeeeeennnes 11
Organization of the DXE CIS ... e e e e e e e e eeennes 11
Target AUdIENCE ... et e e e e e e e e e e e e e e e e e e e 12
Conventions Used in This DOCUMENTcoiiiiiiiiiiiiie e 12
Data Structure DesCriplioNScoooiiiiiiiiiii e eaaaans 12
ProtoCOl DESCHIPHIONSuuiiiii i e e e e e e e e e e e e e e e e e eeeeeannees 13
Procedure DESCriPLIONScooi it e e et e e e e e e e eeeaanee 13
INSrUCtION DESCIIPLIONScciiii e e e e e e eeees 14
Pseudo-Code CONVENLIONScooiiiiiiiieie e a e e e e e e e e e e e 14
Typographic CONVENTIONS ... e 14

2 OVEIVIBWocceceeeiiiirieies s s s s s s sema s s s s s s e s nass s s e e s e s nnnssss s e s e s nnnsssssssennnnnnnssssssnnnnnnnns 17
Driver Execution Environment (DXE) Phase..........cccoiiiiiiiiiiiiicccce e 17
EFT SyStem TabIleuiiiiiiieee e 18
L0 AT = S 18

EF1 BOOt Services Tablecoooiiiiiiiiiii et 19

EF1 Runtime Services Table..........cooo it 20

DXE ServiCes TabIecoooviiiiiiiiiiiiii e a e e e e e 20

DXE FOUNGALION ...ttt e e e e e e e e e e e ettt et e e e e e e aaaaaaaaaaaaaaaaeans 21
() R I] o= | (o o =Y 21
[R I 1= = S 21
DXE Architectural ProtOCOIS.ue e 22
BT = To T 1 1 = T3 = T 1= 25
=701 g1V =T g =T 1T PP PPPPPPPPRPPP 25
4 EF1 System Table ... s s s 27
T 1o Te [U o3 1To] o PP 27
EF1IMage ENtry POINt.........oe et 27
EFIL_IMAGE_ENTRY _POINT ..ot e e e e e e e e e e e e e e eas 28

N I = o [== o =T S 30
EFT SyStem TabIleuiiiii e 31
EFI BOOt SErvices TabIeooooiiiiiiiee e e e e 34
EFI_BOOT_SERVICES ...ttt a e e e e e e e e e 34

EF1 RuNtime Services Tableoooiiiiiiii et a e e 40
EFI_RUNTIME_SERVICEScooiiiiiiiiii ettt a e e e e e e e e e e e e e 40

EF1 Configuration TabIe ... 43
(D) STV ToT =Y =T o] = 45
DXE_SERVICES ...ttt a e e e e e e e e e e e e e e e e 45

EFl Image Entry Point EXamMPIEScovuniiiiiei e 48
EFI Application EXampPlecoooiiiiiie e 48
Non-EFI Driver Model Example (Resident in MemoOry)............eeeveeiiiiiiiiiiiiiiiiiiiieeee, 51
Non-EFI Driver Model (Nonresident in MEMOrY)uuuuiiiiiiiiiiiiiiiiiiiiiieeeeee e 52

Version 0.9 September 2003 v

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

EF1 Driver Model EXamPIeooooiiiiiiiiie ettt e e eeeaeees 53

EFI Driver Model Example (Unloadable) ..o 54

EFI Driver Model Example (Multiple Instances)...........ccceeiiiiiiiiiiiiiiiicccciee e, 56

5 Services - BoOt ServiCes ... 59
EF1 1.10 BOOE SEIVICES ...ttt ettt e e e e e e e e e e e aaaaaaeeeeens 59
Extensions to EFI 1.10 BOOt SEIrVICESccooiiiiiiiieieee e 61
CrEalEEVENT() ... 61
[oT=To | 4 F=To [T TR PPPPPPPPPPPPRP 65

6 Services - RUNtiMe ServiCes....... i 69
EFI 1.10 RUNLIME SEIVICES ...t e et e e e e e e 69
Additional RUNLIME SEIVICESccoieeiiiieiee e 70
StatuS COUE SEIVICES. ...ttt et e s s s s s s aaaannnnes 70
ReportStatuSCode()......coeeeieieiieeee e 71

7 Services - DXE SerVviCes.....nnissees 75
T (oo {1 T3 1T o S 75
Global Coherency DOMaIN SEIVICESoouvuiuuiiiiiie et e e e e e e e e e eeeeeanees 75
OVEIVIBW ...ttt et e e e e e e e e e e aaaaeeaeeeaeeeeeaeaaaaaaaaannnnnnnnes 75
Global Coherency Domain (GCD) Services OVerviewccccueeeeeeenninnnee. 75

GCD MemOry RESOUICES......cceiieiiiiieieeiee ettt a e e e e e e e e e 75

GCD 1/O RESOUIMCES......uvtueei i e e ettt e e e e e e et ea s e e e e e e e e e e r e e e as 77

Global Coherency Domain SEIVICES...........oooiiiiiiiiiiiiie e 79
AdAMEMOIYSPACE() ... ceeeeeeeieeeeeee e 80
AllOCAtEMEMOIYSPACE() -..vvvvvvvrrriieeeiieieiie ittt 83
FreeMemorySPaCE()......ccouueiiiiiiiieie i 86
RemoveMemMOrySPaCE().....uuuuiiiiiie e 88
GetMemorySpaceDescriptor()oovvvveeiiiiieeii e 90
SetMemorySpaceAttributes().......oooveeiiiiiii 93
GetMemOorySpPaceMap()coeeeeeeeee e 95

e [0] (o3] o7 o =Y (LSRR UPRR 97
AllOCALEIOSPACE() ..ttt e e —————- 99
FreeloSPaCE()...ccuui i 102
ReMOVEIOSPACE()......oiiieiiiiieie et 104
GetloSpaceDeSCHPION() ..uuue i 106
GetloSPACEMEAP() «-vveeeeeeiiiiieiee e 108

D] o= 1o T Y= YT 110
DiSPAtCREr SEIVICEScooiiiiiiiiiiiiie et 110
D15 o 7= (o o () PP PEPPPPPPRI 111
SCNEAUIE() .t e e e 112
TEUST() coeieiiie ettt e e e e e e e e e e e e e et e e e e aaaaas 113
ProcessFirmwareVolumeE().........oooooiiiiiiiiie e 114

8 Protocols - Device Path Protocol..............cccoriiiier e 117
T (oo 11 T3 T o PO 117
Firmware Volume File Path Media Device Path ..., 118

Vi September 2003 Version 0.9

in
tel' Draft for Review Contents

9 DXE Foundationccooeiiiimmmeieeeecceessssssssssssssssss s e s s s n s s s s s s s s nmmmsssssssssssssssssnns 119
T (oo 11 T3 T o PP 119
Hand-Off BIOCK (HOB) LiSt......couuiiiiiiii e 120
DXE Foundation Data StrUCIUIES.........cooeiiieeeeee e 121
Required DXE Foundation COmMpPONENtSuuuiiiiiii i 122
Handing Control to DXE DiSpatCher...........oooi oo 124
DXE Foundation Entry POINt..........ooiiiiiiiii e 125

DXE Foundation Entry POINt ..o 125
DXE_ENTRY _POINT ...ttt e e e e e e e e e e e aaaaae s 126
=T 01T oo 1= o Lo 1= R 127
EF1 BOOt SEervices TabIecccoiiiiiiiiiiii e e e e e e e e e e eeeaaees 127
EFI Boot Services Dependenciesouvueeiiiiiiiiiiiiieeiecee e 127
SEETIMEI() et e e e e e e e 128
RAISETPL() +eeeeieiiieiiieeeee et e e e e e e e e e e aaaaaaaaaeens 128
RESTOTETPL() .. ttteeee e ettt ettt e e e e e e e e e e 129
SetWatchdogTimer()ooe i 129

SHAll() e e 129
GetNextMonotonicCOoUNt()ooiiiiiiiiiiee e 129
CalCUlatECIrC32()....ceeeeieiiieie it 129

EF1 Runtime Services Table...........ooo oo 130
EFI Runtime Services DependencCiescccovveieeiiiiiiiiiiiiiiieee e 130
GEtVArAbIE() ... 130
GetNextVariableName()ccooovviiiiiiicc e 130
SetVariable() ...coooeeeeeeee e ———— 130
GEETIME() erreeiieieeei ettt e e e e e e e e e e aaaaaaaaaaans 131
SEITIME() ereeeiiiiee e e e e e e e e e e e as 131
GetWaKeUuPTIME() «eeeeeeiiiiiiieieee e 131
SetWaKeUPTIME() .. eeeeeiiiiiiieieeee e 131
SetVirtualAddreSSMap(). ... e 131
ConVErtPOINTEI()ooeeeiieiee e 132
RESESYSIEMI() ..o 132
GetNextHighMonotonicCouNt().........coeeeiiiiiie e 132
ReportStatuSCode()......cooeiiiieiie e 132

DXE ServiCes TabIeuiiiiiiiiiieeeeee et e e e e e e e 132
DXE Services DepPendenCIES...........coooeiiiiiiiiiiiiii e 132
GetMemorySpaceDesCriptor()cooeeeeeiiiieiieeeeee e 133
SetMemorySpaceAttributes().........oooveeiieiiii 133
GetMemorySpaceMap()coooeeriiiieiee e 133

HOB TranSIatioNSuuuuiiiiiiiiiiiiiieeeee ettt e e e e e e e e e aaaaaaaeeaeeens 134
HOB Translations OVEIVIEWccoiiiiiiiiiiiee et e e e e e e e e e aaeee s 134
PHIT HOB ...ttt e et e ettt e e e e e e et e aaaaaaaaaeaaaaaens 134
CPU HOB.... ..ttt ettt e as e e nnaassnnssssnnnsnneneeeeees 134
Resource Descriptor HOBS ..ot 135
Firmware Volume HOBSooooiiiiiiiic et e e e e e e e e e eeannes 135
Memory AOCation HOBSoooiiiiiiii e e e e e e eeaeaaaes 136
GUID EXtENSION HOBScuuiiiiiiiiiiiiiiiceeeee ettt e e e e e e eeees 136

Version 0.9 September 2003 vii

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

LD S T =7 - 1 o] o T= 137
T (oo 11 T3 T o PP 137
LYo 01T =0 0= £ 138
The @ PHO File ... oot e e e e e e et e e e e e e e e e eeeeeannnes 139

EFI_APRIORI_GUIDoiiiiiiiiiiiieiee et e e e e e e e e e e e e e e ns 140
DependenCy EXPIrESSIONSooeiiiiiiiiiiiiiieeee et a e e e e e e eas 140
Dependency EXpressions OVEIVIEW.........cooiiiiiiiiiiiiieee ettt a e 140
Dependency Expression Instruction Set............ooooiiiiiiiiiiiiccce e 140
BEFORE oo 142

AR TER o e e e e e e e e e e e 143

PUSH e e 144

AN DD e e e e e e e e e e e e e e e e e e e 145

O R et a e e 146

N O T e e e e e e e e e e e 147

TRUE et eees 148

F AL SE oo a e e 149

EN D e 150

SO R e a e e e e e e e e 151

Dependency Expression with No Dependencies...........ccceuviiiieiiiiiiiieieiiiiee e 152
Empty DependencCy EXPreSSIONSccccuiiiiiiiiiii et e et e e 152
Dependency Expression Reverse Polish Notation (RPN) ..., 154

DXE Dispatcher State MacChine.........ccooo oo e 155
DXE Dispatcher State Machine.............ccoooiiiiiiiiiiicce e 155
o=] o] (Y @ o [T o To L PUURUPPPPPPPRIR 157
Security CONSIAEIatioNSuuuiuiiiiiiiiiiiii ettt e e e e e e e e e e e e e e e s e seeeeeeeees 159

0) 3 4 V=T SO 161
T (oo 11 T3 1T o PP 161
Classes Of DXE DIIVELSooeiiiiiiiiee e e et e e e e e e e e e ettt a e e e e e e e e e e e e eeesnnanaa e e e eeaaeaeas 161

... 161
Early DXE DIIVEIS.....ccoo oottt e e e e e e e e e e e e e 161
DXE Drivers That Follow the EFI Driver Model............cccccoceeeiiiiiiieeiiieeeiin, 162
o (o 11T o= PSSR 162
Additional Classificationsuueiiiiiiiiiiiiiieee s 162

12 DXE Architectural ProtocCols........ccccememimeeemmmeeccccsrsssss s s s s e e s e e e e e e 163
T (oo 11 T3 T o PP 163
Boot Device Selection (BDS) Architectural Protocol ..., 166

EFI_BDS_ARCH_PROTOCOLcce it 166
EFI_BDS_ARCH_PROTOCOL.ENrY() ..cceeeeeeeeeeeeeeeeeeeee e 167
CPU Architectural ProtOCOLuuuiiiiiiiiiiiiiieie et 168
EFI_CPU_ARCH_PROTOCOLcciiiie ettt a e e e e e e e e e e 168
EFI_CPU_ARCH_PROTOCOL.FlushDataCache()cccuuvrrrrrerriiiiiiiiiiiiiieaaaaeaeeenn. 171
EFI_CPU_ARCH_PROTOCOL.Enablelnterrupt()cccccuurrrmmmieiiieieiiiiiiiiieeeeeeeeeeennn 173
EFI_CPU_ARCH_PROTOCOL.Disablelnterrupt()cccurrrereemeieiiiiiiiiiieeeeeeeeeeeen, 174
EFI_CPU_ARCH_PROTOCOL.GetInterruptState()uevveemmmeeeeiiiiiiiiiiiiiianeeeeee, 175
EFI_CPU_ARCH_PROTOCOL.INIE().eeeeeeeeeeeeeeeeeeiieeeeeee e e a e e e e e e e e e 176

viii September 2003

Version 0.9

In

13

tel" Draft for Review Contents
EFI_CPU_ARCH_PROTOCOL. RegisterinterruptHandler().........ccccccceeeeiiieniiiieennnnns 177
EFI_CPU_ARCH_PROTOCOL.GEetTimerValue()........cccccvuurrrrrreeriiieeeeiiieeeeeaaaaaaaaaeenn 179
EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes()ccovmmmriiieieeiiieeeeieeeeiins 181
Metronome ArchiteCtural ProtOCOL..........oovniiiiie e e e 183
EFI_METRONOME_ARCH_PROTOCOLuiiitieeeee e 183
EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()......cccvriiiiiiiiiiiiiiaiaeeeeeeeee, 184
Monotonic Counter Architectural ProtoCol...............iiiiuiiiiiii e 185
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOLoeeeeee e 185
Real Time Clock Architectural ProtoCOL.............oiiiuiiii e 186
EFI_REAL_TIME_CLOCK_ARCH_PROTOQCOL ..ot 186
Reset ArchiteCtural ProtOCOLooueiii et e e 187
EFI_RESET_ARCH_PROTOCOL ... 187
Runtime Architectural ProtOCOluiiiiniiii e 188
Runtime Architectural ProtoCol............oouueiiiii e 188
EFI_RUNTIME_ARCH_PROTOCOL .. .cet ettt 188
EFI_RUNTIME_ARCH_PROTOCOL.RegisterImage()........cccuvveerreeeeiiiiiiiiiaaeaaaaaaann. 190
EFI_RUNTIME_ARCH_PROTOCOL.RegisterEvent()...........ccccoevumrrrririieeeeeeeeieeeeens 192
Security Architectural ProtOCOL.............euiiiiiiiiiii e 194
EFI_SECURITY_ARCH_PROTOCOL ..o 194
EFI_SECURITY_ARCH_PROTOCOL. FileAuthenticationState()................cceeooeee. 196
Status Code Architectural ProtOCOLooveiieii e 198
EFI_STATUS_CODE_ARCH_PROTOCOL ... 198
Timer ArchiteCtural ProtOCOL.........ooe e 199
EFI_TIMER_ARCH_PROTOCOL ..ottt 199
EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()ccccoemmrrrriieeeieeeeeeieeeennns 201
EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()cccevvrimmimiiiiiieeeeeeeeeeeeeeiiins 203
EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod()ccccuurrrerieiiiiiiiiiiiiieeaeeaeeenn. 204
EFI_TIMER_ARCH_PROTOCOL. GenerateSoftInterrupt()..........ccccccvveriiiniiinnnnnnnnn. 205
Variable Architectural ProtOCOL...........coouueiiiii e 206
EFI_VARIABLE_ARCH_PROTOCOL ..ot 206
Variable Write Architectural ProtoColoouiiiii e 207
EFI_VARIABLE_WRITE_ARCH_PROTOCOL......ccotiiiieieiee e 207
Watchdog Timer Architectural ProtoCol.................uuuiiiiiiiiiiiiiiiiiie s 208
Watchdog Timer Architectural Protocol................eeeeiiiiiiiiiiiiiiiis 208
EFI_ WATCHDOG_TIMER_ARCH_PROTOCOL ...coveeiee e 208
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. RegisterHandler() 210
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. SetTimerPeriod()cccevrrrnnnnn 212
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. GetTimerPeriod()...........cccceeeenn... 213
Returned Status Codesccoiieeiiiieiiiiiiiieiirssr s rsssrsss s rssssrensssensssees 215
RetUrNEd STAtUS COUBS..... oo e et e e et e e e e e eaaaaes 215
EFI_STATUS COdES RANGES ...covvvuuniiiiiiieeeeiieeeeiee ettt e e e e e e e e e e eene e e e aeaaeas 215
EFI_STATUS Success Codes (High Bit Clear)coooiiiiiiiiiiiiiiieeeee e 215
EFI_STATUS Error Codes (High Bit Set)..........uuviiiiiiiiie e 216
EFI_STATUS Warning Codes (High Bit Clear)cccooiiiiiiiiiiiiie e, 217

Version 0.9 September 2003 [

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

14 Dependency Expression Grammarccccccvveeeeemmsssccsssssesessssssssssssssssnes 219
Dependency EXpression GramiMmar..........oooeeee oo ieieceee et e e e e e e e e e e aaaaeaeeens 219
Example Dependency Expression BNF Grammar ..., 219
Sample DependencCy EXPreSSIONScooiiiiiiiiiiiiiaie e 219
Figures
Figure 2.1. Framework Firmware Phasesoooiiiiiiiiiieeee e 18
Figure 7.1. GCD Memory State Transitionscoooiiiiiiiiiiiee e 77
Figure 7.2. GCD I/O State TransitioNSccooe i 78
FIQUIre 9.1, HOB LIStuueiiiiiiiiieiieeeeeee et e e e e e e e e e eaee s 120
Figure 9.2. EFI System Table and Related Componentseeuviiiiiiiiiiiiiiiiiiiinnnnnn. 121
Figure 9.3. DXE Foundation COMPONENLSccooiiiiiiiiiiiiiiiiii e 122
Figure 10.1. DXE Driver STateS......ccouiiiiiiiiiii ettt 155
Figure 10.2. Sample Firmware VOIUME...........oooiiiiiiiii e 157
Figure 12.1. DXE Architectural ProtoCOIS...........cccuuiiiiiiiiii et 164
Tables
Table 1.1. Organization of the DXE CIS..........oooiiiiii e 11
Table 5.1. Boot Services in the EFI 1.10 Specification...........cccccccoeeeii s 59
Table 6.1. EFI 1.10 RUNIIME SEIVICESuuuiiiiiiiiiiiieeeeee e 69
Table 6.2. Status Code RUNtiIME SErVICEScooviiiiiiiiiiiie e 70
Table 7.1. Global Coherency Domain SEerviCesSucieeeiiiiiiiiiiiieccee e 79
Table 7.2. DispatCher SEIVICEScoooiiiiiiccee e e e e e eeeaaees 110
Table 8.1. Firmware Volume File Path Media Device Path...............cccoooiiiiiiii s 118
Table 9.1. Boot Service DEePeNdENCIEScciiiii it e e e e e e eeeeaeenes 127
Table 9.2. Runtime Service DependencCies...........ccoovriiiiiiiiiciiii i 130
Table 9.3. DXE Service DEePENdENCIESceiiiiiieeiiieeeiiceee e e e e e e e e eeeanaees 133
Table 9.4. Resource Descriptor HOB to GCD Type Mappingcccoooeeeiiiiiiiiiiiieiieee 135
Table 10.1. Dependency Expression Opcode Summary.............coooeeeeiiiiiiiiieccccinieieiiinees 141
Table 10.2. DXE DispatCher Orderingsuuuuuueiiiiiiiiiiiiiieieeeeeee e 158

X September 2003 Version 0.9

n
I ntel Draft for Review

1
Introduction

Overview

This specification defines the core code and services that are required for an implementation of the

Driver Execution Environment (DXE) phase of the Intel® Platform Innovation Framework for EFI

(hereafter referred to as the "Framework"). This DXE Core Interface Specification (CIS) does the

following:

e Describes the basic components of the DXE phase

e Provides code definitions for services and functions that are architecturally required by the
Intel® Platform Innovation Framework for EFI Architecture Specification

e Presents a set of backward-compatible extensions to the EFT 1.10 Specification

e Describes the machine preparation that is required for subsequent phases of firmware execution

See Organization of the DXE CIS for more information.

Organization of the DXE CIS

This DXE Foundation Interface Specification (CIS) is organized as listed below. Because the DXE
Foundation is just one component of a Framework-based firmware solution, there are a number of
additional specifications that are referred to throughout this document:

e For references to other Framework specifications, click on the hyperlink in the page or navigate
through the table of contents (TOC) in the left navigation pane to view the referenced
specification.

e For references to non-Framework specifications, see References in the Interoperability and
Component Specifications help system.

Table 1.1. Organization of the DXE CIS
Book Description

Overview Describes the major components of DXE, including the boot
manager, firmware core, protocols, and requirements.

Boot Manager Describes the boot manager, which is used to load EFI drivers, EFI
applications, and EFI OS loaders.

EFI System Table Describes the EFI System Table that is passed to every EFI driver
and EFI application.

Services - Boot Services Contains the definitions of the fundamental services that are present
in an EFl-compliant system before an OS is booted.

Services - Runtime Services Contains definitions for the fundamental services that are present in
an EFl-compliant system before and after an OS is booted.

Services - DXE Services Contains definitions for the fundamental services that are present in
a DXE-compliant system before an OS is booted.

Version 0.9 September 2003 11

Driver Execution Environment
Core Interface Specification (DXE CIS)

n
Draft for Review I ntel

Book

Protocols - Device Path Protocol

DXE Foundation

DXE Dispatcher

DXE Drivers

DXE Architectural Protocols

Returned Status Codes

Dependency Expression Grammar

Description

Defines the device path extensions required by the DXE
Foundation.

Describes the DXE Foundation that consumes HOBs, Firmware
Volumes, and DXE Architectural Protocols to produce an EFI
System Table, EFI Boot Services, EFI Runtime Services, and the
DXE Services.

Describes the DXE Dispatcher that is responsible for loading and
executing DXE drivers from Firmware Volumes.

Describes the different classes of DXE drivers that may be stored in
Firmware Volumes.

Describes the Architectural Protocols that are produced by DXE
drivers. They are also consumed by the DXE Foundation to
produce the EFI Boot Services, EFI Runtime Services, and DXE
Services.

Lists success, error, and warning codes returned by DXE and EFI
interfaces.

Describes the BNF grammar for a tool that can convert a text file
containing a dependency expression into a dependency section of a
DXE driver stored in a Firmware Volume.

Target Audience

This document is intended for the following readers:

e [HVs and OEMs who will be implementing DXE drivers that are stored in firmware volumes.
e BIOS developers, either those who create general-purpose BIOS and other firmware products
or those who modify these products for use in Intel® architecture—based products.

Conventions Used in This Document

This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions

12

Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve

any reserved field.

The data structures described in this document generally have the following format:

September 2003 Version 0.9

|]
I ntel Draft for Review Introduction

ST RU CTU RE NAM E . The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by

this data structure.

Protocol Descriptions

The protocols described in this document generally have the following format:

P I"OtOCO' N dIMEe . The formal name of the protocol interface.

Summary: A brief description of the protocol interface.
GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol

interface structure or any of its procedures.

Procedure Descriptions

The procedures described in this document generally have the following format:

P roced ure N am e() «» The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Version 0.9 September 2003 13

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Instruction Descriptions

A dependency expression instruction description generally has the following format:

I n St ru Cti on N dame The formal name of the instruction.

SYNTAX: A brief description of the instruction.

DESCRIPTION: A description of the functionality provided by the
instruction accompanied by a table that details the
instruction encoding.

OPERATION: Details the operations performed on operands.
BEHAVIORS AND RESTRICTIONS:

An item-by-item description of the behavior of each
operand involved in the instruction and any restrictions
that apply to the operands or the instruction.

Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a /ist is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

14 September 2003 Version 0.9

intel
Bold

Italic

BOLD Monospace

Bold Monospace

Italic Monospace

Plain Monospace

Draft for Review Introduction

In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

In text, an [talic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

In the online help version of this specification, words in a

Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

In code or in text, words in Ttalic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

In code, words ina Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the

following URL:

http://www.intel.com/technology/framework/spec.htm

Version 0.9

September 2003 15

http://www.intel.com/technology/framework/spec.htm

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

16 September 2003 Version 0.9

n
I ntel Draft for Review

2
Overview

Driver Execution Environment (DXE) Phase

The Driver Execution Environment (DXE) phase is where most of the system initialization is
performed. Pre-EFI Initialization (PEI), the phase prior to DXE, is responsible for initializing
permanent memory in the platform so that the DXE phase can be loaded and executed. The state of
the system at the end of the PEI phase is passed to the DXE phase through a list of position-
independent data structures called Hand-Off Blocks (HOBs). HOBs are described in detail in the
Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification.

There are several components in the DXE phase:

e DXE Foundation
e DXE Dispatcher
o A set of DXE drivers

The DXE Foundation produces a set of Boot Services, Runtime Services, and DXE Services. The
DXE Dispatcher is responsible for discovering and executing DXE drivers in the correct order. The
DXE drivers are responsible for initializing the processor, chipset, and platform components as well
as providing software abstractions for system services, console devices, and boot devices. These
components work together to initialize the platform and provide the services required to boot an
operating system. The DXE phase and Boot Device Selection (BDS) phases work together to
establish consoles and attempt the booting of operating systems. The DXE phase is terminated
when an operating system is successfully booted. The DXE Foundation is composed of boot
services code, so no code from the DXE Foundation itself is allowed to persist into the OS runtime
environment. Only the runtime data structures allocated by the DXE Foundation and services and
data structured produced by runtime DXE drivers are allowed to persist into the OS runtime
environment.

The figure below shows the phases that a platform with Framework firmware will execute.

Version 0.9 September 2003 17

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

Pre Expozed _)
varrer e R

1y [E APIs
Device,
Bus, or
Service

Transient 05 now limited
Driver

Environment

L1

Transient OS
Boot Loader

{r"
DXE

0OS-Present
Dispatcher . App
S
Eogt Servicu_as Final OS Final OS
Runtime Services Boot Loader gl Environment

DXE Services j

SECH”!}'
Security Pre EFI Driver Boot Transient Run Time After
(SEC) | Initialization | Execution Device | System Load {RT) Life
Environment | Environment | Selection {TSL) (AL)
{PEI) (DXE) (BDS)

Power on—[. . Platform initialization . .]——[....05 boot....]—— = Shutdown

Figure 2.1. Framework Firmware Phases

In a Framework firmware implementation, the phase executed prior to DXE is PEI. This
specification covers the transition from the PEI to the DXE phase, the DXE phase, and the DXE
phase’s interaction with the BDS phase. The DXE phase does not require a PEI phase to be
executed. The only requirement for the DXE phase to execute is the presence of a valid HOB

list. There are many different implementations that can produce a valid HOB list for the DXE phase
to execute. The PEI phase in a Framework firmware implementation is just one of many possible
implementations.

EFIl System Table

Overview

18

The EFI System Table is passed to every executable component in the DXE phase. The EFI
System Table contains a pointer to the following:

e EFI Boot Services Table

e EFI Runtime Services Table

It also contains pointers to the console devices and their associated I/O protocols. In addition, the
EFI System Table contains a pointer to the EFI Configuration Table, and this table contains a list of
GUID/pointer pairs. The EFI Configuration Table may include tables such as the DXE Services
Table, HOB list, ACPI table, SMBIOS table, and SAL System table.

September 2003 Version 0.9

intel

Draft for Review Overview

The EFI Boot Services Table contains services to access the contents of the handle database. The
handle database is where protocol interfaces produced by drivers are registered. Other drivers can
use the EFI Boot Services to look up these services produced by other drivers.

All of the services available in the DXE phase may be accessed through a pointer to the EFI System

Table.

EFI Boot Services Table

The following is a brief summary of the services that are available through the EFI Boot Services
Table. These services are described in detail in the EFT 1.10 Specification. This DXE CIS makes a
few minor, backward-compatible extensions to these services.

Task Priority Services:

Memory Services:

Event and Timer
Services:

Protocol Handler
Services:

Image Services:

Driver Support
Services:

Version 0.9

Provides services to increase or decrease the current task
priority level. This can be used to implement simple locks and
to disable the timer interrupt for short periods of time. These
services depend on the CPU Architectural Protocol.

Provides services to allocate and free pages in 4 KB
increments and allocate and free pool on byte boundaries. It
also provides a service to retrieve a map of all the current
physical memory usage in the platform.

Provides services to create events, signal events, check the
status of events, wait for events, and close events. One class
of events is timer events, and that class supports periodic
timers with variable frequencies and one-shot timers with
variable durations. These services depend on the CPU
Architectural Protocol, the Timer Architectural Protocol, the
Metronome Architectural Protocol, and the Watchdog Timer
Architectural Protocol.

Provides services to add and remove handles from the handle
database. It also provides services to add and remove
protocols from the handles in the handle database. Additional
services are available that allow any component to lookup
handles in the handle database, and open and close protocols
in the handle database.

Provides services to load, start, exit, and unload images using
the PE/COFF image format. These services use the services
of the Security Architectural Protocol if it is present.

Provides services to connect and disconnect drivers to devices
in the platform. These services are used by the BDS phase to
either connect all drivers to all devices, or to connect only the
minimum number of drivers to devices required to establish
the consoles and boot an operating system. The minimal
connect strategy is one possible mechanism to reduce boot
time.

September 2003 19

Driver Execution Environment
Core Interface Specification (DXE CIS)

EFI Runtime Services Table

n
Draft for Review I ntel

The following is a brief summary of the services that are available through the EFI Runtime
Services Table. These services are described in detail in the EFT 1.10 Specification. One additional
runtime service, Status Code Services, is described in this specification.

Variable Services :

Real Time Clock
Services:

Reset Services:

Status Code Services:

Virtual Memory
Services:

DXE Services Table

Provides services to look up, add, and remove environment
variables from nonvolatile storage. These services depend on
the Variable Architectural Protocol and the Variable Write
Architectural Protocol.

Provides services to get and set the current time and date. It
also provides services to get and set the time and date of an

optional wake-up timer. These services depend on the Real
Time Clock Architectural Protocol.

Provides services to shut down or reset the platform. These
services depend on the Reset Architectural Protocol.

Provides services to send status codes to a system log or a
status code reporting device. These services depend on the
Status Code Architectural Protocol.

Provides services that allow the runtime DXE components to
be converted from a physical memory map to a virtual
memory map. These services can only be called once in
physical mode. Once the physical to virtual conversion has
been performed, these services cannot be called again. These
services depend on the Runtime Architectural Protocol.

The following is a brief summary of the services that are available through the DXE Services
Table. These are new services that are available in boot service time and are required only by the
DXE Foundation and DXE drivers.

Global Coherency
Domain Services:

Dispatcher Services:

20

Provides services to manage /O resources, memory-mapped
I/O resources, and system memory resources in the platform.
These services are used to dynamically add and remove these
resources from the processor’s global coherency domain.

Provides services to manage DXE drivers that are being
dispatched by the DXE Dispatcher.

September 2003 Version 0.9

In

e ' Draft for Review Overview

DXE Foundation

The DXE Foundation is a boot service image that is responsible for producing the following:

e EFI Boot Services
e EFI Runtime Services
e DXE Services

The DXE Foundation consumes a HOB list and the services of the DXE Architectural Protocols to
produce the full complement of EFI Boot Services, EFI Runtime Services, and DXE Services. The
HOB list is described in detail in the Intel® Platform Innovation Framework for EFI Hand-Off
Block (HOB) Specification.

The DXE Foundation is an implementation of EFI. The DXE Foundation defined in this
specification is backward compatible with the EFT 1.10 Specification. As a result, both the DXE
Foundation and DXE drivers share many of the attributes of EFI images. Because this specification
makes extensions to the standard EFI interfaces, DXE images will not be functional on EFI systems
that are not compliant with this DXE CIS. However, EFI images must be functional on all EFI-
compliant systems including those that are compliant with the DXE CIS.

DXE Dispatcher

The DXE Dispatcher is one component of the DXE Foundation. This component is required to
discover DXE drivers stored in firmware volumes and execute them in the proper order. The
proper order is determine by a combination of an a priori file that is optionally stored in the
firmware volume and the dependency expressions that are part of the DXE drivers. The
dependency expression tells the DXE Dispatcher the set of services that a particular DXE driver
requires to be present for the DXE driver to execute. The DXE Dispatcher does not allow a DXE
driver to execute until all of the DXE driver’s dependencies have been satisfied. After all of the
DXE drivers have been loaded and executed by the DXE Dispatcher, control is handed to the BDS
Architectural Protocol that is responsible for implementing a boot policy that is compliant with the
EFI Boot Manager described in the EFT 1.10 Specification.

DXE Drivers

The DXE drivers are required to initialize the processor, chipset, and platform. They are also
required to produce the DXE Architectural Protocols and any additional protocol services required
to produce I/O abstractions for consoles and boot devices.

Version 0.9 September 2003 21

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

DXE Architectural Protocols

The following is a brief summary of the DXE Architectural Protocols. The DXE Foundation is
abstracted from the platform through the DXE Architectural Protocols. The DXE Architectural
Protocols manifest the platform-specific components of the DXE Foundation. DXE drivers that are
loaded and executed by the DXE Dispatcher component of the DXE Foundation must produce

these protocols.

Security Architectural
Protocol:

CPU Architectural
Protocol:

Metronome

Architectural Protocol:

Timer Architectural
Protocol:

BDS Architectural
Protocol:

Watchdog Timer

Architectural Protocol:

Runtime Architectural
Protocol:

Variable Architectural
Protocol:

Variable Write

Architectural Protocol:

Monotonic Counter

Architectural Protocol:

Reset Architectural
Protocol:

Allows the DXE Foundation to authenticate files stored in
firmware volumes before they are used.

Provides services to manage caches, manage interrupts,
retrieve the processor’s frequency, and query any processor-
based timers.

Provides the services required to perform very short calibrated
stalls.

Provides the services required to install and enable the
heartbeat timer interrupt required by the timer services in the
DXE Foundation.

Provides an entry point that the DXE Foundation calls once
after all of the DXE drivers have been dispatched from all of
the firmware volumes. This entry point is the transition from
the DXE phase to the Boot Device Selection (BDS) phase, and
it is responsible for establishing consoles and enabling the
boot devices required to boot an OS.

Provides the services required to enable and disable a
watchdog timer in the platform.

Provides the services required to convert all runtime services
and runtime drivers from physical mappings to virtual
mappings.

Provides the services to retrieve environment variables and set
volatile environment variables.

Provides the services to set nonvolatile environment variables.

Provides the services required by the DXE Foundation to
manage a 64-bit monotonic counter.

Provides the services required to reset or shutdown the
platform.

September 2003 Version 0.9

intel

Status Code

Architectural Protocol:

Real Time Clock

Architectural Protocol:

Version 0.9

Draft for Review Overview

Provides the services to send status codes from the DXE
Foundation or DXE drivers to a log or device.

Provides the services to retrieve and set the current time and
date as well as the time and date of an optional wake-up timer.

September 2003 23

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

24 September 2003 Version 0.9

n
I ntel Draft for Review

3
Boot Manager

Boot Manager

The Boot Manager in DXE executes after all the DXE drivers whose dependencies have been
satisfied have been dispatched by the DXE Dispatcher. At that time, control is handed to the Boot
Device Selection (BDS) phase of execution. The BDS phase is responsible for implementing the
platform boot policy. System firmware that is compliant with this specification must implement the
boot policy specified in the Boot Manager chapter of the EFI 1.10 Specification. This boot policy
provides flexibility that allows system vendors to customize the user experience during this phase
of execution.

The BDS phase is implemented as part of the BDS Architectural Protocol. The DXE Foundation
will hand control to the BDS Architectural Protocol after all of the DXE drivers whose
dependencies have been satisfied have been loaded and executed by the DXE Dispatcher. The BDS
phase is responsible for the following:

e Initializing console devices

e Loading device drivers

e Attempting to load and execute boot selections

If the BDS phase cannot make forward progress, it will reinvoke the DXE Dispatcher to see if the

dependencies of any additional DXE drivers have been satisfied since the last time the DXE
Dispatcher was invoked.

Version 0.9 September 2003 25

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

26 September 2003 Version 0.9

n
I ntel Draft for Review

4
EFl System Table

Introduction

The topics in this book describe the following:

e The entry point to a DXE or EFI image
e The parameters that are passed to that entry point
e Examples of how the various table examples are presented in the EFI environment

There are four types of EFI images that can be loaded and executed by EFI firmware:

EFI applications
EFI OS loaders
e DXE drivers

e EFI drivers

There are no differences in the entry point for these four image types.

EFl Image Entry Point

Two parameters are passed to the entry point of an EFI image:

e The image handle of the EFI image being executed
e A pointer to the EFI System Table

The EFI System Table contains pointers to the following:

e Active console devices
e EFI Boot Services Table
e EFI Runtime Services Table

e List of EFI Configuration Tables such as the DXE Services Table, HOB list, ACPI table,
SMBIOS table, and SAL System Table

Version 0.9 September 2003 27

In

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

EFI_IMAGE_ENTRY_POINT

Summary

This function is the main entry point for a DXE or EFI image. This entry point is the same for EFI
applications, EFI OS loaders, DXE drivers, and EFI drivers including both device drivers and bus
drivers.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI IMAGE ENTRY POINT) (

IN EFI_HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
) ;

Parameters
ImageHandle

The firmware allocated handle for the EFI image.
SystemTable
A pointer to the EFI System Table.

Description

This function is the entry point to an EFI image. An EFI image is loaded and relocated in system
memory by the EFI Boot Service LoadImage (). An EFI image is invoked through the EFI Boot
Service StartImage ().

The first argument is the image’s image handle. The second argument is a pointer to the image’s
system table. The system table contains the standard output and input handles, plus pointers to the
EFI BOOT SERVICES and EFI RUNTIME SERVICES tables. The service tables contain the
entry points in the firmware for accessing the core EFI system functionality. The handles in the
system table are used to obtain basic access to the console. In addition, the EFI system table
contains pointers to other standard tables that a loaded image may use if the associated pointers are
initialized to nonzero values. Examples of such tables are DXE Services, HOB List, ACPI,
SMBIOS, and SAL System Table.

The ITmageHandle is a firmware-allocated handle that is used to identify the image on various
functions. The handle also supports one or more protocols that the image can use. All images
support the EFI_LOADED IMAGE protocol that returns the source location of the image, the
memory location of the image, the load options for the image, etc. The exact

EFI_LOADED IMAGE structure is defined in the EFI 1.10 Specification.

If the EFI image is an EFI application, then the EFI application executes and either returns or calls
the EFI Boot Services Exit (). An EFI application is always unloaded from memory when it
exits, and its return status is returned to the component that started the EFI application.

If the EFI image is an EFI OS loader, then the EFI OS loader executes and either returns, calls the
EFI Boot Service Exit (), or calls the EFI Boot Service ExitBootServices (). If the EFI

28 September 2003 Version 0.9

-
In e ' Draft for Review EFIl System Table

OS Loader returns or calls Exit (), then the load of the OS has failed, and the EFI OS loader is
unloaded from memory and control is returned to the component that attempted to boot the EFI OS
loader. If ExitBootServices () is called, then the OS loader has taken control of the
platform, and EFI will not regain control of the system until the platform is reset. One method of
resetting the platform is through the EFI Runtime Service ResetSystem ().

If the EFI image is an EFI driver, then the EFI driver executes and either returns or calls the EFI
Boot Service Exit (). If an EFI driver returns an error, then the driver is unloaded from memory.
If the EFI driver returns EFI_SUCCESS, then it stays resident in memory. If the EFI driver does
not follow the EFI Driver Model, then it performs any required initialization and installs its
protocol services before returning. If the EFI driver does follow the EFI Driver Model, then the
entry point is not allowed to touch any device hardware. Instead, the entry point is required to
create and install the EFI_DRIVER BINDING PROTOCOL (defined in the EFI 1.10
Specification) on the TmageHandle of the EFI driver. If this process is completed, then
EFI_SUCCESS is returned. If the resources are not available to complete the driver initialization,
then EFI_OUT OF RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The driver was initialized.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_UNLOAD_IMAGE The driver was initialized, and the driver should be unloaded from
memory

Other error codes The driver failed to initialize, and the driver should be unloaded from
memory.

Version 0.9 September 2003 29

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

EFIl Table Header

Summary
Data structure that precedes all of the standard EFI table types.

Related Definitions
typedef struct {

UINT64 Signature;
UINT32 Revision;
UINT32 HeaderSize;
UINT32 CRC32;
UINT32 Reserved;

} EFI_TABLE HEADER;

Parameters
Signature

A 64-bit signature that identifies the type of table that follows. Unique signatures
have been generated for the EFI System Table, the EFI Boot Services Table, and the
EFI Runtime Services Table.

Revision

The revision of the EFI specification to which this table conforms. The upper 16 bits

of this field contain the major revision value, and the lower 16 bits contain the minor

revision value. The minor revision values are limited to the range of 00..99.
HeaderSize

The size in bytes of the entire table including the EFI_TABLE HEADER.

CRC32
The 32-bit CRC for the entire table. This value is computed by setting this field to 0
and computing the 32-bit CRC for HeaderSize bytes.

Reserved

Reserved field that must be set to 0.

®NoTE

The size of the EFI System Table, EFI Runtime Services Table, and EFI Boot Services Table might
increase over time. It is very important to always use the HeaderS1i ze field of
EFI_TABLE HEADER fo determine the size of these tables.

Description

The data type EFI_TABLE HEADER is the data structure that precedes all of the standard EFI
table types. It includes a signature that is unique for each table type, a revision of the table that may
be updated as extensions are added to the EFI table types, and a 32-bit CRC so a consumer of an
EFI table type can validate the contents of the EFI table.

30 September 2003 Version 0.9

In

tal

EFIl System Table

Version 0.9

Summary

Draft for Review

EFI System Table

Contains pointers to the runtime and boot services tables.

Related Definitions

#define EFI_SYSTEM TABLE SIGNATURE 0x5453595320494249
#define EFI SYSTEM TABLE REVISION ((1<<16) | (10))
#define EFI_1 10 SYSTEM TABLE REVISION ((1<<16) | (10))
#define EFI 1 02 SYSTEM TABLE REVISION ((1<<16) | (02))
typedef struct {

EFI TABLE HEADER Hdr;

CHAR16 *FirmwareVendor;

UINT32 FirmwareRevision;

EFI_HANDLE ConsoleInHandle;

SIMPLE INPUT INTERFACE *Conin;

EFI_ HANDLE ConsoleOutHandle;

SIMPLE TEXT OUTPUT INTERFACE *ConOut;

EFI_HANDLE StandardErrorHandle;

SIMPLE TEXT OUTPUT INTERFACE *StdErr;

EFI RUNTIME SERVICES *RuntimeServices;

EFI BOOT SERVICES *BootServices;

UINTN
EFI CONFIGURATION TABLE
} EFI_SYSTEM TABLE;

Parameters
Hdr

NumberOfTableEntries;
*ConfigurationTable;

The table header for the EFI System Table. This header contains the
EFI SYSTEM TABLE SIGNATURE and EFI SYSTEM TABLE REVISION

values along with the size of the EFI_SYSTEM TABLE structure and a 32-bit CRC
to verify that the contents of the EFI System Table are valid.

FirmwareVendor

A pointer to a null terminated Unicode string that identifies the vendor that produces
the system firmware for the platform.

FirmwareRevision

A firmware vendor specific value that identifies the revision of the system firmware

for the platform.

ConsoleInHandle

The handle for the active console input device. This handle must support the
SIMPLE INPUT PROTOCOL. This handle is only valid after the BDS phase has
connected the console devices, and before ExitBootServices () is called.

September 2003

31

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

ConIn

A pointer to the SIMPLE INPUT PROTOCOL interface that is associated with
ConsoleInHandle. This interface is only valid after the BDS phase has
connected the console devices, and before ExitBootServices () is called.
ConsoleOutHandle
The handle for the active console output device. This handle must support the
SIMPLE TEXT OUTPUT PROTOCOL. This handle is only valid after the BDS
phase has connected the console devices, and before ExitBootServices () is
called.
ConOut

A pointer to the SIMPLE TEXT OUTPUT PROTOCOL interface that is associated
with ConsoleOutHandle. This interface is only valid after the BDS phase has
connected the console devices, and before ExitBootServices () is called.

StandardErrorHandle

The handle for the active standard error console device. This handle must support the
SIMPLE TEXT OUTPUT PROTOCOL. This handle is only valid after the BDS
phase has connected the console devices, and before ExitBootServices () is
called.

StdErr
A pointer to the SIMPLE _TEXT OUTPUT PROTOCOL interface that is associated
with StandardErrorHandle. This interface is only valid after the BDS phase
has connected the console devices, and before ExitBootServices () is called.

RuntimeServices

A pointer to the EFI Runtime Services Table.

BootServices
A pointer to the EFI Boot Services Table.
NumberOfTableEntries

The number of EFI Configuration Tables in the buffer ConfigurationTable.
ConfigurationTable

A pointer to the EFI Configuration Tables. The number of entries in the table is
NumberOfTableEntries.

32 September 2003 Version 0.9

-
In e ' Draft for Review EFI System Table

Description

The EFI System Table contains pointers to the runtime and boot services tables. Except for the
table header, all elements in the service tables are prototypes of function pointers to functions as
defined in the following books:

e Services - Boot Services
e Services - Runtime Services
Prior to a call to ExitBootServices (), all of the fields of the EFI System Table are valid.

After an operating system has taken control of the platform with a call to
ExitBootServices (), only the following fields are valid:

e Hdr

e FirmwareVendor

e FirmwareRevision

e RuntimeServices

e NumberOfTableEntries
e ConfigurationTable

Version 0.9 September 2003 33

Driver Execution Environment

Core Interface Specification (DXE CIS)

EFI Boot Services Table

EFI_BOOT_SERVICES

34

Summary

Draft for Review

Contains a table header and pointers to all of the boot services.

Related Definitions

#define EFI BOOT SERVICES SIGNATURE
#define EFI BOOT SERVICES REVISION

typedef struct {
EFI TABLE HEADER

//

// Task Priority Services
//

EFI RAISE TPL
EFI_RESTORE TPL

//

// Memory Services
//

EFI_ALLOCATE PAGES
EFI FREE PAGES
EFI_GET MEMORY MAP
EF I_ALLOCATE_POOL
EFI_FREE POOL

//

// Event & Timer Services
//

EFI CREATE EVENT

EFI_SET TIMER

EFI WAIT FOR EVENT

EFI SIGNAL EVENT
EFI_CLOSE EVENT
EFI_CHECK EVENT

September 2003

0x56524553544£4£42
((1<<16) | (10))

Hdr;

RaiseTPL;
RestoreTPL;

AllocatePages;
FreePages;
GetMemoryMap;
AllocatePool;
FreePool ;

CreateEvent;
SetTimer;
WaitForEvent;
SignalEvent;
CloseEvent;
CheckEvent;

Version 0.9

Version 0.9

tal

Draft for Review

//

// Protocol Handler Services

//

EFI INSTALL PROTOCOL INTERFACE
EFI REINSTALL PROTOCOL INTERFACE
EFI UNINSTALL PROTOCOL INTERFACE

EFI HANDLE PROTOCOL

EFI HANDLE PROTOCOL

EFI REGISTER PROTOCOL NOTIFY
EFI LOCATE HANDLE

EFI LOCATE DEVICE PATH

EFI INSTALL CONFIGURATION TABLE

//

// Image Services

//
EFI_IMAGE LOAD

EFI_IMAGE START
EFI_EXIT

EFI_IMAGE UNLOAD
EFI_EXIT BOOT SERVICES

//

// Miscellaneous Services

//

EFI_GET NEXT MONOTONIC COUNT
EFI STALL

EFI_SET WATCHDOG TIMER

//

// Driver Support Services

//
EFI CONNECT CONTROLLER
EFI DISCONNECT CONTROLLER

//

InstallProtocolInterface;

ReinstallProtocolInterface;
UninstallProtocolInterface;

HandleProtocol;
PCHandleProtocol;
RegisterProtocolNotify;
LocateHandle;
LocateDevicePath;
InstallConfigurationTable;

LoadImage;
StartImage;

Exit;
UnloadImage;
ExitBootServices;

GetNextMonotonicCount;
Stall;
SetWatchdogTimer;

ConnectController;
DisconnectController;

// Open and Close Protocol Services

//
EFI_OPEN PROTOCOL
EFI_CLOSE PROTOCOL

EFI OPEN PROTOCOL INFORMATION

OpenProtocol;
CloseProtocol;
OpenProtocolInformation;

September 2003

EFI System Table

35

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

36

//

// Extended Protocol Handler Services

//

EFI_PROTOCOLS PER HANDLE ProtocolsPerHandle;
EFI_LOCATE HANDLE BUFFER LocateHandleBuffer;
EFI_LOCATE PROTOCOL LocateProtocol;

EFI INSTALL MULTIPLE PROTOCOL INTERFACES

InstallMultipleProtocolInterfaces;
EFI UNINSTALL MULTIPLE PROTOCOL INTERFACES

IninstallMultipleProtocolInterfaces;

//

// 32-bit CRC Services

//

EFI_CALCULATE CRC32 CalculateCrc32;
//

// Memory Utility Services

//

EFI_COPY MEM CopyMem;

EFI SET MEM SetMem;

} EFI_BOOT SERVICES;

Parameters

Hdr

The table header for the EFI Boot Services Table. This header contains the

EFI BOOT SERVICES SIGNATURE and EFI BOOT SERVICES REVISION
values along with the size of the EFI_BOOT SERVICES TABLE structure and a
32-bit CRC to verify that the contents of the EFI Boot Services Table are valid.

RaiseTPL

Raises the task priority level.
RestoreTPL

Restores/lowers the task priority level.
AllocatePages

Allocates pages of a particular type.
FreePages

Frees allocated pages.
GetMemoryMap

Returns the current boot services memory map and memory map key.

September 2003 Version 0.9

Draft for Review EFI System Table

AllocatePool

Allocates a pool of a particular type.
FreePool

Frees allocated pool.
CreateEvent

Creates a general-purpose event structure. See the CreateEvent () function
description in this document.

SetTimer

Sets an event to be signaled at a particular time.
WaitForEvent

Stops execution until an event is signaled.
SignalEvent

Signals an event.
CloseEvent

Closes and frees an event structure.
CheckEvent

Checks whether an event is in the signaled state.
InstallProtocolInterface

Installs a protocol interface on a device handle.
ReinstallProtocolInterface

Reinstalls a protocol interface on a device handle.
UninstallProtocolInterface

Removes a protocol interface from a device handle.
HandleProtocol

Queries a handle to determine if it supports a specified protocol.
PCHandleProtocol

Reserved. Must be NULL.
RegisterProtocolNotify

Registers an event that is to be signaled whenever an interface is installed for a
specified protocol.

LocateHandle
Returns an array of handles that support a specified protocol.
LocateDevicePath

Locates all devices on a device path that support a specified protocol and returns the
handle to the device that is closest to the path.

September 2003 37

In

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

38

InstallConfigurationTable

Adds, updates, or removes a configuration table from the EFI System Table.

LoadImage

Loads an EFI image into memory. See the LoadImage () function description in
this document.

StartImage

Transfers control to a loaded image’s entry point.
Exit

Exits the image’s entry point.
UnloadImage

Unloads an image.
ExitBootServices

Terminates boot services.
GetNextMonotonicCount

Returns a monotonically increasing count for the platform.
Stall

Stalls the processor.
SetWatchdogTimer

Resets and sets a watchdog timer used during boot services time.
ConnectController

Uses a set of precedence rules to find the best set of drivers to manage a controller.
DisconnectController

Informs a set of drivers to stop managing a controller.
OpenProtocol

Adds elements to the list of agents consuming a protocol interface.
CloseProtocol

Removes elements from the list of agents consuming a protocol interface.
OpenProtocolInformation

Retrieve the list of agents that are currently consuming a protocol interface.
ProtocolsPerHandle

Retrieves the list of protocols installed on a handle. The return buffer is
automatically allocated.

LocateHandleBuffer

Retrieves the list of handles from the handle database that meet the search criteria.
The return buffer is automatically allocated.

September 2003 Version 0.9

-
In e ' Draft for Review EFIl System Table

LocateProtocol

Finds the first handle in the handle database the supports the requested protocol.
InstallMultipleProtocolInterfaces

Installs one or more protocol interfaces onto a handle.
UninstallMultipleProtocolInterfaces

Uninstalls one or more protocol interfaces from a handle.
CalculateCrc32

Computes and returns a 32-bit CRC for a data buffer.
CopyMem

Copies the contents of one buffer to another buffer.
SetMem

Fills a buffer with a specified value.

Description

The EFI Boot Services Table contains a table header and pointers to all of the boot services.
Except for the table header, all elements in the EFI Boot Services Tables are prototypes of function
pointers to functions as defined in Services - Boot Services. The function pointers in this table are
not valid after the operating system has taken control of the platform with a call to
ExitBootServices().

Version 0.9 September 2003 39

Driver Execution Environment

Core Interface Specification (DXE CIS)

EFI Runtime Services Table

EFI_RUNTIME_SERVICES

40

Summary

Contains a table header and pointers to all of the runtime services.

Related Definitions

Draft for Review

#define EFI RUNTIME SERVICES SIGNATURE 0x56524553544e5552

#define EFI_ RUNTIME SERVICES REVISION

typedef struct {
EFI TABLE HEADER

//

// Time Services

//

EFI GET TIME
EFI_SET TIME
EFI_GET WAKEUP TIME
EFI_SET WAKEUP TIME

//

// Virtual Memory Services
//

EFI_SET VIRTUAL ADDRESS MAP
EF I_CONVERT_POINTER

//

// Variable Services

//

EFI GET VARIABLE

EFI GET NEXT VARIABLE NAME
EFI SET VARIABLE

//

// Miscellaneous Services

//
EFI_GET NEXT HIGH MONO COUNT
EFI_RESET SYSTEM

//

// Status Code Services

//
EFI_REPORT STATUS CODE

} EFI_RUNTIME SERVICES;

September 2003

((1<<16) | (10))
Hdr;

GetTime;

SetTime;

GetWakeupTime;
SetWakeupTime;

SetVirtualAddressMap;
ConvertPointer;

GetVariable;
GetNextVariableName ;
SetVariable;

GetNextHighMonotonicCount;
ResetSystem;

ReportStatusCode;

Version 0.9

intel

Parameters

Hdr

Draft for Review EFI System Table

The table header for the EFI Runtime Services Table. This header contains the
EFI RUNTIME SERVICES SIGNATURE and

EFI RUNTIME SERVICES REVISION values along with the size of the
EFI_RUNTIME SERVICES TABLE structure and a 32-bit CRC to verify that the
contents of the EFI Runtime Services Table are valid.

GetTime

Returns the current time and date and the time-keeping capabilities of the platform.

SetTime

Sets the current local time and date information.

GetWakeupTime

Returns the current wake-up alarm clock setting.

SetWakeupTime

Sets the system wake-up alarm clock time.

SetVirtualAddressMap

Used by an OS loader to convert from physical addressing to virtual addressing.

ConvertPointer

Used by EFI components to convert internal pointers when switching to virtual
addressing.

GetVariable

Returns the value of a variable.

GetNextVariableName

Enumerates the current variable names.

SetVariable

Sets the value of a variable.

GetNextHighMonotonicCount

Returns the next high 32 bits of the platform’s monotonic counter.

ResetSystem

Resets the entire platform.

ReportStatusCode

Version 0.9

Provides an interface that a software module can call to report a status code. See the
ReportStatusCode () function description in this document.

September 2003 41

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

42

Description

The EFI Runtime Services Table contains a table header and pointers to all of the runtime services.
Except for the table header, all elements in the EFI Runtime Services Tables are prototypes of
function pointers to functions as defined Services - Runtime Services. Unlike the EFI Boot
Services Table, this table and the function pointers it contains are valid after the operating system
has taken control of the platform with a call to ExitBootServices (). Ifacall to
SetVirtualAddressMap () is made by the OS, then the function pointers in this table are
fixed up to point to the new virtually mapped entry points.

September 2003 Version 0.9

-
In e ' Draft for Review EFI System Table

EFI Configuration Table

Summary

The ConfigurationTable field of the EFI System Table points to a list of GUID/pointer

pairs. The lists of GUIDs below are required for OS and firmware interoperability. Other GUIDs
may be defined as required by different IBV, OEMs, IHVs, and OSVs.

Related Definitions

typedef struct{
EFI_GUID VendorGuid;
VOID *VendorTable;
} EFI CONFIGURATION TABLE;

Parameters
VendorGuid

The 128-bit GUID value that uniquely identifies the EFI Configuration Table. See
GUID Definitions below for GUID values defined by this specification.

VendorTable

A pointer to the table associated with VendorGuid.

Description

The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This
table contains a set of GUID/pointer pairs. Each element of this table is described by this
EFI_CONFIGURATION TABLE structure. The number of types of configuration tables is
expected to grow over time, which is why a GUID is used to identify the configuration table type.
The EFI Configuration Table may contain at most once instance of each table type.

GUID Definitions

#define DXE SERVICES TABLE GUID \
{0x5ad34ba, 0x6£02,0x4214, 0x95, 0x2e, 0x4d, 0xa0, 0x39, 0x8e, 0x2b, 0xb9}

#define HOB LIST GUID \
{0x7739£24c, 0x93d7,0x11d4, 0x9a, 0x3a, 0x0, 0x90, 0x27, 0x3 £, Oxcl, 0x4d}

#define ACPI 20 TABLE GUID \
{0x8868e871, 0xe4£1l, 0x11d3, 0xbc, 0x22,0x0, 0x80, 0xc7, 0x3c, 0x88,0x81}

#define ACPI TABLE GUID \
{0xeb9d2d30, 0x2d488, 0x11d3, 0x9a,0x16,0x0,0x90,0x27, 0x3f, Oxcl, 0x4d}

Version 0.9 September 2003 43

In

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

44

#define SAL SYSTEM TABLE GUID \
{0xeb9d2d32,0x2488, 0x11d3, 0x9a, 0x16, 0x0, 0x90, 0x27, 0x3 £, Oxcl, 0x4d}

#define SMBIOS TABLE GUID \
{0xeb9d2d31, 0x2d88, 0x11d3, 0x9a, 0x16,0x0,0x90, 0x27, 0x3 £, Oxcl, 0x4d}

#define MPS TABLE GUID \
{0xeb9d2d2f, 0x2d488, 0x11d3, 0x9a,0x16,0x0,0x90,0x27, 0x3f, Oxcl, 0x4d}

September 2003 Version 0.9

-
In e ’ Draft for Review EFI System Table

DXE Services Table
DXE_SERVICES

Summary

Contains a table header and pointers to all of the DXE-specific services.

Related Definitions

#define DXE SERVICES SIGNATURE 0x565245535f455844
#define DXE SERVICES REVISION ((0<<16) | (90)

typedef struct {

EFI TABLE HEADER Hdr;

//

// Global Coherency Domain Services

//

EFI ADD MEMORY SPACE AddMemorySpace;

EFI ALLOCATE MEMORY SPACE AllocateMemorySpace;
EFI FREE MEMORY SPACE FreeMemorySpace;

EFI REMOVE MEMORY SPACE RemoveMemorySpace;

EFI GET MEMORY SPACE DESCRIPTOR GetMemorySpaceDescriptor;
EFI SET MEMORY SPACE ATTRIBUTES SetMemorySpaceAttributes;

EFI GET MEMORY SPACE MAP GetMemorySpaceMap ;

EFI ADD IO SPACE AddIoSpace;

EFI ALLOCATE IO SPACE AllocateIoSpace;

EFI FREE IO SPACE FreeIoSpace;

EFI REMOVE IO SPACE RemoveIoSpace;

EFI GET IO SPACE DESCRIPTOR GetIoSpaceDescriptor;

EFI GET IO SPACE MAP GetIoSpaceMap;

//

// Dispatcher Services

//

EFI DISPATCH Dispatch;

EFI SCHEDULE Schedule;

EFI TRUST Trust;

//

// Service to process a single firmware volume found in a
capsule

//

EFI PROCESS FIRMWARE VOLUME ProcessFirmwareVolume;

} DXE SERVICES;

Version 0.9 September 2003 45

In

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

Parameters
Hdr

The table header for the DXE Services Table. This header contains the

DXE SERVICES SIGNATURE and DXE SERVICES REVISION values along
with the size of the DXE_SERVICES TABLE structure and a 32-bit CRC to verify
that the contents of the DXE Services Table are valid.

AddMemorySpace

Adds reserved memory, system memory, or memory-mapped I/O resources to the
global coherency domain of the processor. See the AddMemorySpace () function
description in this document.

AllocateMemorySpace

Allocates nonexistent memory, reserved memory, system memory, or memory-
mapped I/O resources from the global coherency domain of the processor. See the
AllocateMemorySpace () function description in this document.

FreeMemorySpace

Frees nonexistent memory, reserved memory, system memory, or memory-mapped
I/0O resources from the global coherency domain of the processor. See the
FreeMemorySpace () function description in this document.

RemoveMemorySpace

Removes reserved memory, system memory, or memory-mapped I/O resources from
the global coherency domain of the processor. See the RemoveMemorySpace ()
function description in this document.

GetMemorySpaceDescriptor

Retrieves the descriptor for a memory region containing a specified address. See the
GetMemorySpaceDescriptor () function description in this document.

SetMemorySpaceAttributes

Modifies the attributes for a memory region in the global coherency domain of the
processor. See the SetMemorySpaceAttributes () function description in this
document.

GetMemorySpaceMap

Returns a map of the memory resources in the global coherency domain of the
processor. See the GetMemorySpaceMap () function description in this
document.

AddIoSpace

Adds reserved I/O or 1/0O resources to the global coherency domain of the processor.
See the AddTIoSpace () function description in this document.

AllocateIoSpace

Allocates nonexistent /0, reserved /O, or 1/0O resources from the global coherency
domain of the processor. See the AllocateIoSpace () function description in
this document.

46 September 2003 Version 0.9

Draft for Review EFIl System Table

FreeIoSpace

Frees nonexistent I/0O, reserved 1/O, or I/O resources from the global coherency
domain of the processor. See the FreeIoSpace () function description in this
document.

RemoveIoSpace

Removes reserved I/O or I/O resources from the global coherency domain of the
processor. See the RemoveIoSpace () function description in this document.

GetIoSpaceDescriptor

Retrieves the descriptor for an I/O region containing a specified address. See the
GetIoSpaceDescriptor () function description in this document.

GetIoSpaceMap

Returns a map of the I/O resources in the global coherency domain of the processor.
See the GetIoSpaceMap () function description in this document.

Dispatch

Loads and executed DXE drivers from firmware volumes. See the Dispatch ()
function description in this document.

Schedule

Clears the Schedule on Request (SOR) flag for a component that is stored in a
firmware volume. See the Schedule () function description in this document.

Trust

Promotes a file stored in a firmware volume from the untrusted to the trusted state.
See the Trust () function description in this document.

ProcessFirmwareVolume

Creates a firmware volume handle for a firmware volume that is present in system
memory. See the ProcessFirmwareVolume () function description in this
document.

Description

The EFI DXE Services Table contains a table header and pointers to all of the DXE-specific
services. Except for the table header, all elements in the DXE Services Tables are prototypes of
function pointers to functions as defined in Services - DXE Services.

Version 0.9

September 2003 47

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

EFl Image Entry Point Examples

EFl Application Example

The following example shows the EFI image entry point for an EFI application. This application
makes use of the EFI System Table, EFI Boot Services Table, EFI Runtime Services Table, and

DXE Services Table.

EFI _GUID gEfiDxeServicesTableGuid = DXE SERVICES TABLE GUID;

EFI SYSTEM TABLE *gST;
EFI BOOT SERVICES *gBS;
EFI RUNTIME SERVICES *gRT;

DXE SERVICES

*gDS;

EfiApplicationEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable

)

UINTN
BOOLEAN
EFI_STATUS
EFI_TIME
UINTN

Index;

Result;

Status;

*Time;
NumberOfDescriptors;

EFI GCD MEMORY SPACE DESCRIPTOR MemorySpaceDescriptor;

gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;

gDS = NULL;
for (Index
Result =

= 0; Index < gST->NumberOfTableEntries; Index++) {
EfiCompareGuid (

&gEfiDxeServicesTableGuid,

& (gST->ConfigurationTable [Index] .VendorGuid)

) i

if (Result) {
gDS = gST->ConfigurationTable [Index] .VendorTable;

}
}

if (gbhS ==

NULL)

return EFI_NOT FOUND;

}

48

September 2003 Version 0.9

Version 0.9

Draft for Review EFI System Table

/7

// Use EFI System Table to print “Hello World” to the active console
// output device.
//
Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\r”) ;
if (EFI_ERROR (Status)) {

return Status;

}

//
// Use EFI Boot Services Table to allocate a buffer to store the

// current time and date.

//

Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (EFI_TIME),
(VOID **)&Time
) i

if (EFI_ERROR (Status)) {

return Status;

}
//

// Use the EFI Runtime Services Table to get the current
// time and date.
//
Status = gRT->GetTime (&Time, NULL)
if (EFI_ERROR (Status)) ({
return Status;

}
/7

// Use EFI Boot Services to free the buffer that was used to store
// the current time and date.
//
Status = gBS->FreePool (Time) ;
if (EFI_ERROR (Status))
return Status;

}

//
// Use the DXE Services Table to get the current GCD Memory Space Map
//
Status = gDS->GetMemorySpaceMap (
&NumberOfDescriptors,
&MemorySpaceMap
)
if (EFI_ERROR (Status)) ({
return Status;

}

September 2003 49

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

/7

// Use EFI Boot Services to free the buffer that was used to store
// the GCD Memory Space Map.
//

Status = gBS->FreePool (MemorySpaceMap) ;
if (EFI_ERROR (Status))
return Status;

return Status;

50 September 2003 Version 0.9

-
In e ’ Draft for Review EFI System Table

Non-EFI Driver Model Example (Resident in Memory)

The following example shows the EFI image entry point for an EFI driver that does not follow the
EFI Driver Model. Because this driver returns EFI_SUCCESS, it will stay resident in memory
after it exits.

EFI _GUID gEfiDxeServicesTableGuid = DXE SERVICES TABLE GUID;

EFI SYSTEM TABLE *gST;
EFI BOOT SERVICES *gBS;
EFI RUNTIME SERVICES *gRT;
DXE SERVICES *gDS;

EfiDriverEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

UINTN Index;
BOOLEAN Result;

gST SystemTable;
gBS gST->BootServices;
gRT = gST->RuntimeServices;

gDS = NULL;
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
Result = EfiCompareGuid (
&gEfiDxeServicesTableGuid,
& (gST->ConfigurationTable [Index] .VendorGuid)
)
if (Result) {
gDS = gST->ConfigurationTable [Index] .VendorTable;
}

if (gDS == NULL) {
return EFI UNLOAD IMAGE;

}
//
// Implement driver initialization here.

//

return EFI SUCCESS;

Version 0.9 September 2003 51

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

Non-EFI Driver Model (Nonresident in Memory)

52

The following example shows the EFI image entry point for an EFI driver that also does not follow
the EFI Driver Model. Because this driver returns the error code EFI_UNLOAD IMAGE, it will
not stay resident in memory after it exits.

EFI _GUID gEfiDxeServicesTableGuid = DXE SERVICES TABLE GUID;

EFI SYSTEM TABLE *gST;
EFI BOOT SERVICES *gBS;
EFI RUNTIME SERVICES *gRT;
DXE SERVICES *gDS;

EfiDriverEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

UINTN Index;
BOOLEAN Result;

gST SystemTable;
gBS gST->BootServices;
gRT = gST->RuntimeServices;

gDS = NULL;
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
Result = EfiCompareGuid (
&gEfiDxeServicesTableGuid,
& (gST->ConfigurationTable [Index] .VendorGuid)
)
if (Result) {
gDS = gST->ConfigurationTable [Index] .VendorTable;
}

if (gDS == NULL) {
return EFI UNLOAD IMAGE;

}
//

// Implement driver initialization here.

//

return EFI UNLOAD IMAGE;

September 2003 Version 0.9

-
In e ’ Draft for Review EFI System Table

EFI Driver Model Example

The following is an EFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFI DRIVER BINDING PROTOCOL is
defined in Chapter 9 of the EFI 1.10 Specification. The function prototypes for the
AbcSupported (), AbeStart (), and AbeStop () functions are defined in Section 9.1 of the
EFI 1.10 Specification. This function saves the driver's image handle and a pointer to the EFI Boot
Services Table in global variables, so that the other functions in the same driver can have access to
these values. It then creates an instance of the EFI_DRIVER BINDING PROTOCOL and installs
it onto the driver's image handle.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI BOOT SERVICES *gBS;
static EFI_DRIVER BINDING PROTOCOL mAbcDriverBinding = {
AbcSupported,
AbcStart,
AbcStop,
0x10,
NULL,
NULL

}i

AbcEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

EFI_STATUS Status;

gBS = SystemTable->BootServices;

mAbcDriverBinding->ImageHandle ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
)

return Status;

Version 0.9 September 2003 53

Driver Execution Environment

Core Interface Specification (DXE CIS)

| |
Draft for Review I ntel ’

EFI Driver Model Example (Unloadable)

The following is the same EFI Driver Model example as in EFI Driver Model Example, except that
it also includes the code required to allow the driver to be unloaded through the boot service
Unload (). Any protocols installed or memory allocated in AbcEntryPoint () must be
uninstalled or freed in the AbcUnload (). The AbcUnload () function first checks to see how
many controllers this driver is currently managing. If the number of controllers is greater than zero,
then this driver cannot be unloaded at this time, so an error is returned.

54

extern EFI_GUID
extern EFI GUID
EFI _BOOT SERVICES

gEfiLoadedImageProtocolGuid;
gEfiDriverBindingProtocolGuid;
*gBS;

static EFI_DRIVER BINDING PROTOCOL mAbcDriverBinding = {

AbcSupported,
AbcStart,
AbcStop,

1,

NULL,

NULL

Vi

EFI_STATUS
AbcUnload (
IN EFI_HANDLE
) i

AbcEntryPoint (

ImageHandle

IN EFI HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable

)

EFI_STATUS Status;
EFI_LOADED IMAGE PROTOCOL *LoadedImage;

gBS = SystemTable->BootServices;

Status = gBS->OpenProtocol (
ImageHandle,
&gEfiLoadedImageProtocolGuid,
&LoadedImage,
ImageHandle,
NULL,
EFI_OPEN PROTOCOL GET PROTOCOL
)

if (EFI_ERROR (Status))

return Status;

}

LoadedImage->Unload = AbcUnload;

September 2003

Version 0.9

-
In e Draft for Review EFI System Table

mAbcDriverBinding->ImageHandle
mAbcDriverBinding->DriverBindingHandle

ImageHandle;
ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL

) i

return Status;

}

EFI_STATUS

AbcUnload (
IN EFI_HANDLE ImageHandle
)

EFI_STATUS Status;
UINTN Count;

Status = LibGetManagedControllerHandles (ImageHandle, &Count, NULL) ;
if (EFI_ERROR (Status)) {
return Status;

}

if (Count > 0) {
return EFI ACCESS DENIED;

}

Status = gBS->UninstallMultipleProtocolInterfaces (
ImageHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
)
return Status;

Version 0.9 September 2003 55

In

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

EFI Driver Model Example (Multiple Instances)

The following is the same as the first EFI Driver Model example, except that it produces three
EFI_DRIVER BINDING PROTOCOL instances. The first one is installed onto the driver’s
image handle. The other two are installed onto newly created handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI BOOT SERVICES *gBS;

static EFI DRIVER BINDING PROTOCOL mAbcDriverBindingA = {
AbcSupporteda,
AbcStartAh,
AbcStopA,
1,
NULL,
NULL

}i

static EFI_DRIVER BINDING PROTOCOL mAbcDriverBindingB = {
AbcSupportedB,
AbcStartB,
AbcStopB,
ll
NULL,
NULL

}i

static EFI_DRIVER BINDING PROTOCOL mAbcDriverBindingC = {
AbcSupportedC,
AbcStartC,
AbcStopC,
1,
NULL,
NULL

Vi

AbcEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

{

EFI_STATUS Status;

gBS = SystemTable->BootServices;

56 September 2003 Version 0.9

Version 0.9

Draft for Review EFI System Table
//
// Install mAbcDriverBindingA onto ImageHandle
//
mAbcDriverBindingA->ImageHandle = ImageHandle;
mAbcDriverBindingA-s>DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingA->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindinga,
NULL
) ;

if (EFI_ERROR (Status)) ({

return Status;

}

//
// Install mAbcDriverBindingB onto a newly created handle

//
mAbcDriverBindingB->ImageHandle
mAbcDriverBindingB->DriverBindingHandle

ImageHandle;
NULL;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingB->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
NULL
)

if (EFI_ERROR (Status)) ({

return Status;

}

!/
// Install mAbcDriverBindingC onto a newly created handle

//
mAbcDriverBindingC->ImageHandle
mAbcDriverBindingC->DriverBindingHandle

ImageHandle;
NULL;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingC->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
NULL
)

return Status;

September 2003

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

58 September 2003 Version 0.9

n
I ntel Draft for Review

5
Services - Boot Services

EFIl 1.10 Boot Services

The table below lists all the boot services that are documented in the EFI 1.10 Specification. See
the EFI 1.10 Specification for a detailed description for each of these boot services.

This DXE CIS defines backward-compatible extensions to the following services:

e C(CreateEvent ()

e LoadImage ()

The details of these extensions are contained in the following topics. The extension to
CreateEvent () is a candidate for inclusion in a future revision of the EFI specification.

Table 5.1. Boot Services in the EFI 1.10 Specification

Name Type Description

CreateEvent Boot Creates a general-purpose event structure.

CloseEvent Boot Closes and frees an event structure.

SignalEvent Boot Signals an event.

WaitForEvent Boot Stops execution until an event is signaled.

CheckEvent Boot Checks whether an event is in the signaled state.

SetTimer Boot Sets an event to be signaled at a particular time.

RaiseTPL Boot Raises the task priority level.

RestoreTPL Boot Restores/lowers the task priority level.

AllocatePages Boot Allocates pages of a particular type.

FreePages Boot Frees allocated pages.

GetMemoryMap Boot Returns the current boot services memory map and memory
map key.

AllocatePool Boot Allocates a pool of a particular type.

FreePool Boot Frees allocated pool.

InstallProtocolinterface Boot Installs a protocol interface on a device handle.

UninstallProtocollnterface Boot Removes a protocol interface from a device handle.

ReinstallProtocollnterface Boot Reinstalls a protocol interface on a device handle.

RegisterProtocolNotify Boot Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

LocateHandle Boot Returns an array of handles that support a specified
protocol.

HandleProtocol Boot Queries a handle to determine if it supports a specified
protocol.

Version 0.9 September 2003 59

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

Name Type Description

LocateDevicePath Boot Locates all devices on a device path that support a specified
protocol and returns the handle to the device that is closest
to the path.

OpenProtocol Boot = Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Boot Removes elements from the list of agents consuming a
protocol interface.

OpenProtocolinformation Boot Retrieve the list of agents that are currently consuming a
protocol interface.

ConnectController Boot Uses a set of precedence rules to find the best set of drivers
to manage a controller.

DisconnectController Boot Informs a set of drivers to stop managing a controller.

ProtocolsPerHandle Boot Retrieves the list of protocols installed on a handle. The
return buffer is automatically allocated.

LocateHandleBuffer Boot Retrieves the list of handles from the handle database that
meet the search criteria. The return buffer is automatically
allocated.

LocateProtocol Boot Finds the first handle in the handle database the supports

the requested protocol.
InstallMultipleProtocolinterfaces Boot Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolinterfaces | Boot Uninstalls one or more protocol interfaces from a handle.

Loadlmage Boot Loads an EFl image into memory.

Startimage Boot Transfers control to a loaded image’s entry point.

Unloadlmage Boot Unloads an image.

EFI_IMAGE_ENTRY_POINT Boot Prototype of an EFl image’s entry point.

Exit Boot Exits the image’s entry point.

ExitBootServices Boot Terminates boot services.

SetWatchDogTimer Boot Resets and sets a watchdog timer used during boot services
time.

Stall Boot Stalls the processor.

CopyMem Boot Copies the contents of one buffer to another buffer.

SetMem Boot Fills a buffer with a specified value.

GetNextMonotonicCount Boot Returns a monotonically increasing count for the platform.

InstallConfigurationTable Boot Adds, updates, or removes a configuration table from the
EFI System Table.

CalculateCrc32 Boot Computes and returns a 32-bit CRC for a data buffer.

60 September 2003 Version 0.9

intel
I ' Draft for Review Services — Boot Services

Extensions to EFl 1.10 Boot Services
CreateEvent()

Summary

Creates an event. This function has been extended from the CreateEvent () Boot Service
defined in the EFT 1.10 Specification. The event types EFI EVENT NOTIFY SIGNAL ALL and
EFI EVENT SIGNAL READY TO BOOT have been added to this service

Prototype

EFI_STATUS
CreateEvent (

IN UINT32 Type,
IN EFI TPL NotifyTpl,
IN EFI EVENT NOTIFY NotifyFunction,
IN VOID *NotifyContext,
OUT EFI EVENT *Event
)i
Parameters
Type

The type of event to create and its mode and attributes. The #define statements in
"Related Definitions" below can be used to specify an event’s mode and attributes.
NotifyTpl
The task priority level of event notifications. Type EFI_TPL is defined in
RaiseTPL () inthe EFI 1.10 Specification.
NotifyFunction

Pointer to the event’s notification function. Type EFI EVENT NOTIFY is defined
in "Related Definitions" below.

NotifyContext

Pointer to the notification function’s context; corresponds to parameter Context in
the notification function.

Event
Pointer to the newly created event if the call succeeds; undefined otherwise. Type
EFI EVENT is defined in "Related Definitions" below.
Description

The CreateEvent () function creates a new event of type Type and returns it in the location
referenced by Event. The event’s notification function, context, and task priority level are
specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively.

Version 0.9 September 2003 61

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

Events exist in one of two states, “waiting” or “signaled." When an event is created, firmware puts
it in the "waiting” state. When the event is signaled, firmware changes its state to “signaled” and, if
EFI EVENT NOTIFY SIGNAL is specified, places a call to its notification function in a FIFO
queue. There is a queue for each of the “basic” task priority levels defined in the EFT 1.10
Speciﬁcation (EFI_TPL_APPLICATION, EFI TPL CALLBACK, and EFI_TPL_NOTIFY).
The functions in these queues are invoked in FIFO order, starting with the highest priority level
queue and proceeding to the lowest priority queue that is unmasked by the current TPL. If the
current TPL is equal to or greater than the queued notification, it will wait until the TPL is lowered
via RestoreTPL().

In a general sense, there are two “types” of events, synchronous and asynchronous. Asynchronous
events are closely related to timers and are used to support periodic or timed interruption of
program execution. This capability is typically used with device drivers. For example, a network
device driver that needs to poll for the presence of new packets could create an event whose type
includes EFI EVENT TIMER and then call the SetTimer () function. When the timer expires,
the firmware signals the event.

Synchronous events have no particular relationship to timers. Instead, they are used to ensure that
certain activities occur following a call to a specific interface function. One example of this is the
cleanup that needs to be performed in response to a call to the ExitBootServices () function.
ExitBootServices () can clean up the firmware since it understands firmware internals, but it
cannot clean up on behalf of drivers that have been loaded into the system. The drivers have to do
that themselves by creating an event whose type is

EFI EVENT SIGNAL EXIT BOOT SERVICES and whose notification function is a function
within the driver itself. Then, when ExitBootServices () has finished its cleanup, it signals
each event of type EFI_EVENT SIGNAL EXIT BOOT SERVICES.

Another example of the use of synchronous events occurs when an event of type
EFI EVENT SIGNAL VIRTUAL ADDRESS CHANGE is used in conjunction with the
SetVirtualAddressmap () function in Chapter 6 of the EFI 1.10 Specification.

The EFI EVENT NOTIFY WAIT and EFI EVENT NOTIFY SIGNAL flags are exclusive. If
neither flag is specified, the caller does not require any notification concerning the event and the
NotifyTpl, NotifyFunction, and NotifyContext parameters are ignored. If
EFI_EVENT NOTIFY WAIT is specified, then the event is signaled and its notify function is
queued whenever a consumer of the event is waiting for it (via WaitForEvent () or
CheckEvent ()). Ifthe EFI_EVENT NOTIFY SIGNAL flag is specified then the event’s
notify function is queued whenever the event is signaled.

®NoTE

Because its internal structure is unknown to the caller, Event cannot be modified by the caller.
The only way to manipulate it is to use the published event interfaces.

62 September 2003 Version 0.9

| |
I ntel ’ Draft for Review

Related Definitions

//***********************

// EFI_EVENT
//***********************

typedef VOID *EFI_ EVENT

//***********************

// Event Types
//***********************

// These types can be “ORed” together as needed - for example,

khkkkhkhkhkkkhkkkhhkkhkhkkhkkhkkkkkkhkkkkkk

khkkhkhkhhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhhkkkhkkhkkk*k

khkkkhkhkhkkhkhkhkkhkhkkhhkhkhkhkhkkkkkkhkkkkkk

khkhkhkhhkhhkhhkhkhhkhhhhhhhhhkhkhhhkhhkhkkk

Services — Boot Services

// EFI_EVENT TIMER might be “ORed” with EFI EVENT NOTIFY WAIT or

// EFI_EVENT NOTIFY SIGNA
#define EFI EVENT TIMER

#define EFI_ EVENT RUNTIME
#define EFI_EVENT RUNTIME

#define EFI_EVENT NOTIFY
#define EFI_EVENT NOTIFY
#define EFI_EVENT NOTIFY

#define EFI_EVENT SIGNAL
#define EFI_EVENT SIGNAL
#define EFI_EVENT SIGNAL
#define EFI_EVENT SIGNAL

L.
0x80000000
0x40000000

 CONTEXT 0x20000000

WAIT 0x00000100

SIGNAL 0x00000200

SIGNAL ALL 0x00000400

READY TO BOOT 0x00000203

EXIT BOOT SERVICES 0x00000201

VIRTUAL ADDRESS CHANGE 0x60000202

LEGACY BOOT 0x00000204

Following is a description of the fields in the above definition.

EFI_EVENT_TIMER

The event is a timer event and may be passed to
SetTimer (). Note that timers only function during boot

services time.

EFI_EVENT_RUNTIME

The event is allocated from runtime memory. If an event is
to be signaled after the call to

ExitBootServices (), the event's data structure
and notification function need to be allocated from runtime
memory. For more information, see
SetVirtualAddressMap () in Services - Runtime
Services.

EFI_EVENT_RUNTIME_CONTEXT

The event's Not 1 fyContext pointer points to a

runtime memory address. See the above discussion of
EFI EVENT RUNTIME.

EFI_EVENT_NOTIFY_WAIT

The event's Not i fyFunction isto be invoked

whenever the event is being waited on via
WaitForEvent () or CheckEvent ().

EFI_EVENT_NOTIFY_SIGNAL

The event's Not i fyFunction is to be invoked
whenever the event is signaled via SignalEvent ().

Version 0.9

September 2003

63

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

EFI_EVENT_NOTIFY_SIGNAL_ALL Used to signal all events of a specified type. For example,
this bit may be used with
EFI_EVENT SIGNAL READY TO BOOT.

EFI_EVENT_SIGNAL_READY_TO_BOOT This event is to be notified by the system when the EFI
Boot Manager is about to load and execute a boot option.

EFI_EVENT_SIGNAL_EXIT_BOOT_ This event is to be notified by the system when

SERVICES ExitBootServices () isinvoked. This type cannot
be used with any other EVT bit type. The notification
function for this event is not allowed to use the Memory
Allocation Services, or call any functions that use the
Memory Allocation Services, because these services
modify the current memory map.
EFI_EVENT_SIGNAL_VIRTUAL_ The event is to be notified by the system when
ADDRESS_CHANGE SetVirtualAddressMap () is performed. This

type cannot be used with any other EVT bit type. See the
discussion above of EFI EVENT RUNTIME.

EFI_EVENT_SIGNAL_LEGACY_BOOT This event is to be notified by the system when the EFI Boot
Manager is about to boot a legacy boot option. Events of this
type are notified just before INT19 is invoked.

//***

// EFI_EVENT NOTIFY
[/ kRRkkkkkkkdkkkkhhkhdhkhhhhhhhkhkkkhhkkhhhkhhhkhhhhhhhkk

typedef

VOID

(EFIAPI *EFI EVENT NOTIFY) (
IN EFI EVENT Event,
IN VOID *Context
) ;

Event

Event whose notification function is being invoked. Type EFI EVENT is defined
above.

Context

Pointer to the notification function’s context, which is implementation dependent.
Context corresponds to NotifyContext in CreateEvent ().

Status Codes Returned

EFI_SUCCESS The event structure was created.
EFI_INVALID_PARAMETER One of the parameters has an invalid value.
EFI_OUT_OF_RESOURCES The event could not be allocated.

64 September 2003 Version 0.9

intel
I ' Draft for Review Services — Boot Services

Loadimage()

Summary

Loads an EFI image into memory. This function has been extended from the LoadImage () Boot
Service defined in the EFT 1.10 Specification to allow EFI images to be loaded from files stored in
firmware volumes. It also validates the image using the services of the Security Architectural
Protocol.

Prototype

EFI_STATUS
LoadImage (

IN BOOLEAN BootPolicy,
IN EFI HANDLE ParentImageHandle,
IN EFI DEVICE PATH *FilePath,
IN VOID *SourceBuffer OPTIONAL ,
IN UINTN SourceSize,
OUT EFI HANDLE *TmageHandle
) ;
Parameters
BootPolicy

If TRUE, indicates that the request originates from the boot manager, and that the
boot manager is attempting to load FilePath as a boot selection. Ignored if
SourceBuffer is not NULL.

ParentImageHandle

The caller’s image handle. Type EFI_HANDLE is defined in the
InstallProtocolInterface () function description in the EFI 1.10
Specification. This field is used to initialize the ParentHandle field of the
LOADED IMAGE protocol for the image that is being loaded.

FilePath

The specific file path from which the image is loaded. Type EFI_DEVICE PATH is
defined in the LocateDevicePath () function description in the EFI 1.10
Specification.

SourceBuffer

If not NULL, a pointer to the memory location containing a copy of the image to be
loaded.

SourceSize

The size in bytes of SourceBuffer. Ignored if SourceBuf fer is NULL.

Version 0.9 September 2003 65

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

ImageHandle

Pointer to the returned image handle that is created when the image is successfully
loaded. Type EFI_HANDLE is defined in the InstallProtocolInterface ()
function description in the EFT 1.10 Specification.

Description

The LoadImage () function loads an EFI image into memory and returns a handle to the

image. The supported subsystem values in the PE image header are listed in "Related Definitions"
below. The image is loaded in one of two ways. If SourceBuffer is not NULL, the function is a
memory-to-memory load in which SourceBuffer points to the image to be loaded and
SourceSize indicates the image’s size in bytes. FilePath specifies where the image specified
by SourceBuffer and SourceSize was loaded. In this case, the caller has copied the image
into SourceBuffer and can free the buffer once loading is complete.

If SourceBuffer is NULL, the function is a file copy operation that uses the

EFI FIRMWARE VOLUME PROTOCOL, followed by the SIMPLE FILE SYSTEM PROTOCOL
and then the LOAD FILE PROTOCOL to access the file referred to by FilePath. In this case,
the BootPolicy flag is passed to the LOAD FILE.LoadFile () function and is used to load
the default image responsible for booting when the Fi 1ePath only indicates the device. For more
information see the discussion of the Load File Protocol in Chapter 11 of the EFT 1.10
Specification.

Regardless of the type of load (memory-to-memory or file copy), the function relocates the code in
the image while loading it.

The image is also validated using the FileAuthenticationState () service of the Security
Architectural Protocol (SAP). If the SAP returns the status EFI_ SUCCESS, then the load
operation is completed normally. If the SAP returns the status EFI_SECURITY VIOLATION,
then the load operation is completed normally, and the EFI_SECURITY VIOLATION status is
returned. In this case, the caller is not allowed to start the image until some platform specific policy
is executed to protect the system while executing untrusted code. If the SAP returns the status
EFI_ACCESS DENIED, then the image should never be trusted. In this case, the image is
unloaded from memory, and EFI_ACCESS DENIED is returned.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image
and supports the LOADED IMAGE PROTOCOL. The caller may fill in the image’s “load options”
data, or add additional protocol support to the handle before passing control to the newly loaded
image by calling StartImage (). Also, once the image is loaded, the caller either starts it by
calling StartImage () or unloads it by calling UnloadImage ().

66 September 2003 Version 0.9

intel

Related Definitions

Draft for Review Services — Boot Services

//**

// Supported subsystem values
//**

#define EFI_IMAGE SUBSYSTEM EFI APPLICATION 10
#define EFI IMAGE SUBSYSTEM EFI BOOT SERVICE DRIVER 11
#define EFI IMAGE SUBSYSTEM EFI RUNTIME DRIVER 12
#define EFI_IMAGE SUBSYSTEM SAL RUNTIME DRIVER 13

Following is a description of the fields in the above definition.

EFI_IMAGE_SUBSYSTEM_EFI_
APPLICATION

EFI_IMAGE_SUBSYSTEM_EFI_
BOOT_SERVICE_DRIVER

EFI_IMAGE_SUBSYSTEM_EFI_
RUNTIME_DRIVER

EFI_IMAGE_SUBSYSTEM_SAL_
RUNTIME_DRIVER

The image is loaded into memory of type Ef iLoaderCode,
and the memory is freed when the application exits.

The image is loaded into memory of type
EfiBootServicesCode. Iftheimage exits with an error
code, then the memory for the image is free. If the image exits
with EFI SUCCESS, then the memory for the image is not
freed.

The image is loaded into memory of type
EfiRuntimeServicesCode. If the image exits with an
error code, then the memory for the image is free. If the image
exits with EFI_SUCCESS, then the memory for the image is not
freed. Images of this type are automatically converted from
physical addresses to virtual address when the Runtime Service
SetVirtualAddressMap () is called.

The image is loaded into memory of type
EfiRuntimeServicesCode. If the image exits with an
error code, then the memory for the image is free. If the image
exits with EFI_SUCCESS, then the memory for the image is not
freed. Images of this type are not converted from physical to
virtual addresses when the Runtime Service
SetVirtualAddressMap () is called.

Version 0.9

September 2003

67

Driver Execution Environment
Core Interface Specification (DXE CIS)

68

Status Codes Returned

Draft for Review

EFI_SUCCESS

The image was loaded into memory.

EFI_SECURITY_VIOLATION

The image was loaded into memory, but the current security policy

dictates that the image should not be executed at this time.

EFI_ACCESS_DENIED

The image was not loaded into memory because the current

security policy dictates that the image should never be executed.

EFI_NOT_FOUND

The F1ilePath was not found.

EFI_INVALID_PARAMETER

One of the parameters has an invalid value.

EFI_UNSUPPORTED

The image type is not supported, or the device path cannot be
parsed to locate the proper protocol for loading the file.

EFI_OUT_OF_RESOURCES

Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR

Image was not loaded because the image format was corrupt or
not understood.

EFI_DEVICE_ERROR

Image was not loaded because the device returned a read error.

September 2003

Version 0.9

n
I ntel Draft for Review

6
Services - Runtime Services

EFIl 1.10 Runtime Services

The table below lists all the runtime services that are documented in the EFI 1.10 Specification.
See the EFI 1.10 Specification for a detailed description for each of these runtime services.

This DXE CIS defines one additional runtime service:

e Status Code Services

The details of this additional service are contained in the following topics. This service is a
candidate for inclusion in a future revision of the EFI specification.

Table 6.1. EFI 1.10 Runtime Services

Name Type Description

GetVariable Runtime Returns the value of a variable.

GetNextVariableName Runtime Enumerates the current variable names.

SetVariable Runtime Sets the value of a variable.

GetTime Runtime Returns the current time and date, and the time-keeping
capabilities of the platform.

SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wake-up alarm clock setting.

SetWakeupTime Runtime Sets the system wake-up alarm clock time.

SetVirtualAddressMap Runtime Used by an OS loader to convert from physical addressing to

virtual addressing.

ConvertPointer Runtime Used by EFI components to convert internal pointers when
switching to virtual addressing.

ResetSystem Runtime Resets the entire platform.

GetNextHighMonotonicCount | Runtime = Returns the next high 32 bits of the platform’s monotonic
counter.

Version 0.9 September 2003 69

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

Additional Runtime Services

Status Code Services
The table below lists the runtime services that are used to report status codes. These services are
candidates for inclusion in a future revision of the EFI specification.

Table 6.2. Status Code Runtime Services
Name Type Description
ReportStatusCode Runtime | Reports status codes at boot services time and runtime.

70 September 2003 Version 0.9

intel
I ' Draft for Review Services — Runtime Services

ReportStatusCode()

Summary
Provides an interface that a software module can call to report a status code.
Prototype

EFI_ STATUS
(EFIAPI *EFI_REPORT STATUS CODE) (

IN EFI STATUS CODE TYPE Type,
IN EFI STATUS CODE VALUE Value,
IN UINT32 Instance,
IN EFI GUID *CallerId OPTIONAL,
IN EFI STATUS CODE DATA *Data OPTIONAL
) ;
Parameters
Type

Indicates the type of status code being reported. Type EFI STATUS CODE TYPE
is defined in "Related Definitions” below.

Value

Describes the current status of a hardware or software entity. This included
information about the class and subclass that is used to classify the entity as well as
an operation. For progress codes, the operation is the current activity. For error
codes, it is the exception. For debug codes, it is not defined at this time. Type

EFI STATUS CODE VALUE is defined in “Related Definitions” below. Specific
values are discussed in the Intel® Platform Innovation Framework for EFI Status
Code Specification.

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers. Type EFI_GUID is
defined in InstallProtocolInterface () inthe EFI 1.10 Specification.

Data

This optional parameter may be used to pass additional data. Type

EFI STATUS CODE DATA is defined in "Related Definitions” below. The
contents of this data type may have additional GUID-specific data. The standard
GUIDs and their associated data structures are defined in the Intel® Platform
Innovation Framework for EFI Status Code Specification.

Version 0.9 September 2003 71

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

Description

Various software modules including drivers can call this function to report a status code. No
disposition of the status code is guaranteed. The ReportStatusCode () function may choose
to log the status code, but this action is not required.

It is possible that this function may get called at EFI_TPL LEVEL HIGH. Therefore, this
function cannot call any protocol interface functions or services (including memory allocation) that
are not guaranteed to work at EFI_TPL LEVEL HIGH. It should be noted that

SignalEvent () could be called by this function because it works at any TPL including
EFI_TPL LEVEL HIGH. Itis possible for an implementation to use events to log the status
codes when the TPL level is reduced.

ReportStatusCode () function can perform other implementation specific work, but that is not
specified in the architecture document.

In case of an error, the caller can specify the severity. In most cases, the entity that reports the error
may not have a platform wide view and may not be able to accurately assess the impact of the error
condition. The DXE driver that produces the Status Code Architectural Protocol,

EFI STATUS CODE ARCH PROTOCOL, is responsible for assessing the true severity level
based on the reported severity and other information. This DXE driver may perform platform
specific actions based on the type and severity of the status code being reported.

If Data is present, the Status Code Architectural Protocol driver treats it as read only data. The
Status Code Architectural Protocol driver must copy Data to a local buffer in an atomic operation
before performing any other actions. This is necessary to make this function re-entrant. The size of
the local buffer may be limited. As a result, some of the Data can be lost. The size of the local
buffer should at least be 256 bytes in size. Larger buffers will reduce the probability of losing part
of the Data. Note than multiple status codes may be reported at elevated TPL levels before the
TPL level is reduced. Allocating multiple local buffers may reduce the probability losing status
codes at elevated TPL levels. If all of the local buffers are consumed, then this service may not be
able to perform the platform specific action required by the status code being reported. As a result,
if all the local buffers are consumed, the behavior of this service is undefined.

Ifthe CallerId parameter is not NULL, then it is required to point to a constant GUID. In other
words, the caller may not reuse or release the buffer pointed to by CallerId.

72 September 2003 Version 0.9

In

Related Definitions

//
// Status Code Type Definition

//
typedef UINT32 EFI_STATUS CODE_TYPE;

//

// A Status Code Type is made up of the code type and severity
// All values masked by EFI STATUS CODE RESERVED MASK are

// reserved for use by this specification.

//

#define EFI_STATUS CODE TYPE MASK 0x000000FF

#define EFI_STATUS CODE SEVERITY MASK O0xFF000000

#define EFI_STATUS CODE RESERVED MASK O0x00FFFF00

//

// Definition of code types, all other values masked by
// EFI_STATUS CODE TYPE MASK are reserved for use by

// this specification.

//
#define EFI PROGRESS CODE 0x00000001
#define EFI_ERROR CODE 0x00000002
#define EFI DEBUG CODE 0x00000003
//

// Definitions of severities, all other values masked by

// EFI_STATUS CODE SEVERITY MASK are reserved for use by

// this specification.

// Uncontained errors are major errors that could not contained
// to the specific component that is reporting the error

// For example, if a memory error was not detected early enough,

// the bad data could be consumed by other drivers.

//

#define EFI_ERROR MINOR 0x40000000
#define EFI_ERROR MAJOR 0x80000000
#define EFI ERROR UNRECOVERED 0x90000000
#define EFI_ERROR_U'NCONTAINED 0xa0000000
//

// Status Code Value Definition

//

typedef UINT32 EFI_STATUS CODE_VALUE;

//

// A Status Code Value is made up of the class, subclass, and
// an operation.

//

#define EFI_STATUS CODE CLASS MASK 0xFF000000

Version 0.9 September 2003

e Draft for Review Services — Runtime Services

73

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

#define EFI_STATUS CODE SUBCLASS MASK 0x00FF0000
#define EFI_STATUS CODE OPERATION MASK 0x0000FFFF

//

// Definition of Status Code extended data header.
// The data will follow HeaderSize bytes from the beginning of
// the structure and is Size bytes long.

//

typedef struct {
UINT16 HeaderSize;
UINT16 Size;

EFI GUID Type;,
} EFI_STATUS CODE DATA;

HeaderSize

The size of the structure. This is specified to enable future expansion.
Size

The size of the data in bytes. This does not include the size of the header structure.
Type

The GUID defining the type of the data. The standard GUIDs and their associated

data structures are defined in the /ntel® Platform Innovation Framework for EFI
Status Code Specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully
EFI_DEVICE_ERROR The function should not be completed due to a device error.

74 September 2003 Version 0.9

n
I ntel Draft for Review

7
Services - DXE Services

Introduction

This chapter describes the services from the DXE Services Table. These services include the
following:

e Global Coherency Domain (GCD) Services
e Dispatcher Services

The GCD Services are used to manage the system memory, memory-mapped I/O, and I/O resources
present in a platform. The Dispatcher Services are used to invoke the DXE Dispatcher and modify
the state of a DXE driver that is being tracked by the DXE Dispatcher.

Global Coherency Domain Services
Overview

Global Coherency Domain (GCD) Services Overview

The Global Coherency Domain (GCD) Services are used to manage the memory and I/O resources
visible to the boot processor. These resources are managed in two different maps:

e GCD memory space map
e GCD I/O space map

If memory or I/O resources are added, removed, allocated, or freed, then the GCD memory space
map and GCD I/O space map are updated. GCD Services are also provided to retrieve the contents
of these two resource maps.

The GCD Services can be broken up into two groups. The first manages the memory resources
visible to the boot processor, and the second manages the 1/O resources visible to the boot
processor. Not all processor types support I/O resources, so the management of I/O resources may
not be required. However, since system memory resources and memory-mapped I/O resources are
required to execute the DXE environment, the management of memory resources is always
required.

GCD Memory Resources

The Global Coherency Domain (GCD) Services used to manage memory resources include the
following:

e AddMemorySpace ()

e AllocateMemorySpace ()

e FreeMemorySpace ()

¢ RemoveMemorySpace ()

e SetMemorySpaceAttributes|()

Version 0.9 September 2003 75

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

76

The GCD Services used to retrieve the GCD memory space map include the following:

e GetMemorySpaceDescriptor ()

e GetMemorySpaceMap ()

The GCD memory space map is initialized from the HOB list that is passed to the entry point of the
DXE Foundation. One HOB type describes the number of address lines that are used to access
memory resources. This information is used to initialize the state of the GCD memory space map.
Any memory regions outside this initial region are not available to any of the GCD Services that
are used to manage memory resources. The GCD memory space map is designed to describe the
memory address space with as many as 64 address lines. Each region in the GCD memory space
map can begin and end on a byte boundary. There are additional HOB types that describe the
location of system memory, the location memory mapped I/O, the location of firmware devices, the
location of firmware volumes, the location of reserved regions, and the location of system memory
regions that were allocated prior to the execution of the DXE Foundation. The DXE Foundation
must parse the contents of the HOB list to guarantee that memory regions reserved prior to the
execution of the DXE Foundation are honored. As a result, the GCD memory space map must
reflect the memory regions described in the HOB list. The GCD memory space map provides the
DXE Foundation with the information required to initialize the memory services such as
AllocatePages (), FreePages (),AllocatePool (), FreePool (), and
GetMemoryMap (). See the EFI 1.10 Specification for definitions of these services.

A memory region described by the GCD memory space map can be in one of several different
states:

e Nonexistent memory

System memory

e Memory-mapped I/O

e Reserved memory

These memory regions can be allocated and freed by DXE drivers executing in the DXE
environment. In addition, a DXE driver can attempt to adjust the caching attributes of a memory
region. The figure below shows the possible state transitions for each byte of memory in the GCD
memory space map. The transitions are labeled with the GCD Service that can move the byte from
one state to another. The GCD services are required to merge similar memory regions that are
adjacent to each other into a single memory descriptor, which reduces the number of entries in the
GCD memory space map.

September 2003 Version 0.9

Draft for Review

Services — DXE Services

SetAttributes

¥

Allocated
Reserved

Allocate Free
SetAttributes
Add
Reserved
Remove
Dperation GCD Service
Add AddMemorySpace
Remove EemoveldemorySpacel
Allocate AllocateMemaorySpaced)
Free FreemermorySpacel)
SetAttributes| SettemorySpaceifiributes(

Setattributes

Allocated
MMIO
Allocate . Free

Add Remove
SetAttributes

Add
Remove
Free Allocate
Setattributes

Allocated
Non Existent

SetAttributes

)

SetAttributes

®

Allocated
System Memory

Free
SetAttributes

(4

Allocate

Figure 7.1. GCD Memory State Transitions

GCD 1/0 Resources

The Global Coherency Domain (GCD) Services used to manage I/O resources include the
following:

AddIoSpace ()
AllocateIoSpace()

FreeIoSpace ()

RemovelIoSpace ()

The GCD Services used to retrieve the GCD I/O space map include the following:

GetIoSpaceDescriptor ()

GetIoSpaceMap ()

The GCD I/O space map is initialized from the HOB list that is passed to the entry point of the
DXE Foundation. One HOB type describes the number of address lines that are used to access 1/O
resources. This information is used to initialize the state of the GCD I/O space map. Any [/O
regions outside this initial region are not available to any of the GCD Services that are used to
manage /O resources. The GCD I/O space map is designed to describe the I/O address space with

Version 0.9

September 2003

77

Driver Execution Environment
Core Interface Specification (DXE CIS)

78

n
Draft for Review I ntel

as many as 64 address lines. Each region in the GCD I/O space map can being and end on a byte

boundary.

An I/0 region described by the GCD I/O space map can be in several different states. These
include nonexistent I/O, I/O, and reserved I/O. These I/O regions can be allocated and freed by
DXE drivers executing in the DXE environment. The figure below shows the possible state
transitions for each byte of I/O in the GCD I/O space map. The transitions are labeled with the
GCD Service that can move the byte from one state to another. The GCD Services are required to
merge similar I/O regions that are adjacent to each other into a single I/O descriptor, which reduces
the number of entries in the GCD I/O space map.

Allocate

Allocated
Reserved

Reserved

Add

Remove

Operation | GCD Service
Add AddloSpaced
Remove EemoveloSpaced
Allocate AllocateloSpaced
Free FreelaSpaced

Allocated
/0

Allocate

Add

Remove

Allocated
Non Existent

Figure 7.2. GCD |/O State Transitions

September 2003 Version 0.9

intel

Draft for Review Services — DXE Services

Global Coherency Domain Services

The functions that make up Global Coherency Domain (GCD) Services are used during preboot to
add, remove, allocate, free, and provide maps of the system memory, memory-mapped I/O, and I/O
resources in a platform. These services, used in conjunction with the Memory Allocation Services,
provide the ability to manage all the memory and I/O resources in a platform. The table below lists
the Global Coherency Domain Services.

Table 7.1. Global Coherency Domain Services

Name

AddMemorySpace

AllocateMemorySpace

FreeMemorySpace

RemoveMemorySpace

GetMemorySpaceDescriptor

SetMemorySpaceAttributes

GetMemorySpaceMap

AddloSpace

AllocateloSpace

FreeloSpace

RemoveloSpace

GetloSpaceDescriptor

GetloSpaceMap

Type

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Description

This service adds reserved memory, system memory, or memory-
mapped /O resources to the global coherency domain of the
processor.

This service allocates nonexistent memory, reserved memory,
system memory, or memory-mapped I/O resources from the global
coherency domain of the processor.

This service frees nonexistent memory, reserved memory, system
memory, or memory-mapped I/O resources from the global
coherency domain of the processor.

This service removes reserved memory, system memory, or
memory-mapped I/O resources from the global coherency domain
of the processor.

This service retrieves the descriptor for a memory region
containing a specified address.

This service modifies the attributes for a memory region in the
global coherency domain of the processor.

Returns a map of the memory resources in the global coherency
domain of the processor.

This service adds reserved I/O, or I/O resources to the global
coherency domain of the processor.

This service allocates nonexistent |/O, reserved /O, or I/O
resources from the global coherency domain of the processor.

This service frees nonexistent /O, reserved 1/O, or I/O resources
from the global coherency domain of the processor.

This service removes reserved I/O, or I/O resources from the
global coherency domain of the processor.

This service retrieves the descriptor for an 1/O region containing a
specified address.

Returns a map of the 1/O resources in the global coherency domain
of the processor.

Version 0.9

September 2003 79

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

AddMemorySpace()

Summary

This service adds reserved memory, system memory, or memory-mapped I/O resources to the
global coherency domain of the processor.

Prototype

EFI_STATUS
AddMemorySpace (

IN EFI GCD MEMORY TYPE GcdMemoryType,
IN EFI PHYSICAL ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Capabilities
);

Parameters
GcdMemoryType

The type of memory resource being added. Type EFI GCD MEMORY TYPE is
defined in “Related Definitions” below. The only types allowed are
EfiGcdMemoryTypeReserved, EfiGecdMemoryTypeSystemMemory, and
EfiGcdMemoryTypeMemoryMappedIo.

BaseAddress

The physical address that is the start address of the memory resource being added.
Type EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the EFT 1.10 Specification.

Length
The size, in bytes, of the memory resource that is being added.
Capabilities
The bit mask of attributes that the memory resource region supports. The bit mask of

available attributes is defined in the GetMemoryMap () function description in the
EFI 1.10 Specification.

Description

The AddMemorySpace () function converts unallocated non-existent memory ranges to a range
of reserved memory, a range of system memory, or a range of memory mapped I/O.
BaseAddress and Length specify the memory range, and GcdMemoryType specifies the
memory type. The bit mask of all supported attributes for the memory range being added is
specified by Capabilities. If the memory range is successfully added, then EFI_SUCCESS is
returned.

If the memory range specified by BaseAddress and Length is of type
EfiGcdMemoryTypeSystemMemory, then the memory range may be automatically allocated
for use by the EFI memory services. If the addition of the memory range specified by

80 September 2003 Version 0.9

n
In e ' Draft for Review Services — DXE Services

BaseAddress and Length results in a GCD memory space map containing one or more 4 KB
regions of unallocated Efi GcdMemoryTypeSystemMemory aligned on 4 KB boundaries, then
those regions will always be converted to ranges of allocated
EfiGcdMemoryTypeSystemMemory. This extra conversion will never be performed for
fragments of memory that do not meet the above criteria.

If the GCD memory space map contains adjacent memory regions that only differ in their base

address and length fields, then those adjacent memory regions must be merged into a single
memory descriptor.

If Length is zero, then EFI_INVALID PARAMETER is returned.

If GedMemoryType is not EfiGecdMemoryTypeReserved,
EfiGecdMemoryTypeSystemMemory, or EfiGcdMemoryTypeMemoryMappedIo, then
EFI INVALID PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If any portion of the memory range specified by BaseAddress and Length is not of type
EfiGcdMemoryTypeNonExistent, then EFI_ACCESS DENIED is returned.

If any portion of the memory range specified by BaseAddress and Length was allocated in a
prior call to AllocateMemorySpace (), then EFI_ACCESS DENIED is returned.

If there are not enough system resources available to add the memory resource to the global
coherency domain of the processor, then EFI_OUT OF RESOURCES is returned.

Related Definitions

//***

// EFI_GCD MEMORY TYPE
//***
typedef enum {
EfiGcdMemoryTypeNonExistent,
EfiGcdMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory,
EfiGcdMemoryTypeMemoryMappedIo,
EfiGcdMemoryTypeMaximum
} EFI_GCD MEMORY TYPE;

EfiGcdMemoryTypeNonExistent

A memory region that is visible to the boot processor. However, there are no system
components that are currently decoding this memory region.

EfiGcdMemoryTypeReserved

A memory region that is visible to the boot processor. This memory region is being
decoded by a system component, but the memory region is not considered to be
either system memory or memory-mapped 1/O.

Version 0.9 September 2003 81

In

n
Driver Execution Environment Draft for Review tel
Core Interface Specification (DXE CIS)

EfiGcdMemoryTypeSystemMemory

A memory region that is visible to the boot processor. A memory controller is
currently decoding this memory region and the memory controller is producing a
tested system memory region that is available to the memory services.

EfiGcdMemoryTypeMemoryMappedIo

A memory region that is visible to the boot processor. This memory region is
currently being decoded by a component as memory-mapped I/O that can be used to
access /0O devices in the platform.

Status Codes Returned

EFI_SUCCESS The memory resource was added to the global coherency domain
of the processor.

EFI_INVALID_PARAMETER GcdMemoryType is invalid.
EFI_INVALID_PARAMETER Lengthi s zero.

EFI_OUT_OF_RESOURCES There are not enough system resources to add the memory
resource to the global coherency domain of the processor.

EFI_UNSUPPORTED The processor does not support one or more bytes of the
memory resource range specified by BaseAddress and
Length.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by

BaseAddress and Length conflicts with a memory
resource range that was previously added to the global
coherency domain of the processor.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by
BaseAddress and Length was allocated in a prior call to
AllocateMemorySpace ().

82 September 2003 Version 0.9

intel

Draft for Review Services — DXE Services

AllocateMemorySpace()

Summary

This service allocates nonexistent memory, reserved memory, system memory, or memory-mapped
/O resources from the global coherency domain of the processor.

Prototype

EFI_STATUS
AllocateMemorySpace (

IN EFI GCD ALLOCATE TYPE GcdAllocateType,
IN EFI GCD MEMORY TYPE GcdMemoryType,
IN UINTN Alignment,
IN UINT64 Length,
IN OUT EFI PHYSICAL ADDRESS *BaseAddress,
IN EFI_ HANDLE ImageHandle,
IN EFI_HANDLE DeviceHandle OPTIONAL
)i
Parameters
GcdAllocateType
The type of allocation to perform. Type EFI _GCD ALLOCATE TYPE is defined in
“Related Definitions” below.
GcdMemoryType
The type of memory resource being allocated. Type EFI GCD MEMORY TYPE is
defined in AddMemorySpace (). The only types allowed are
EfiGecdMemoryTypeNonExistent, Ef iGcdMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory, and
EfiGcdMemoryTypeMemoryMappedIo.
Alignment
The log base 2 of the boundary that BaseAddress must be aligned on output. For
example, a value of 0 means that BaseAddress can be aligned on any byte
boundary, and a value of 12 means that BaseAddress must be aligned on a 4 KB
boundary.
Length
The size in bytes of the memory resource range that is being allocated.
BaseAddress

Version 0.9

A pointer to a physical address. On input, the way in which the address is used
depends on the value of Type. See “Description” below for more information. On
output the address is set to the base of the memory resource range that was allocated.
Type EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the EFI 1.10 Specification.

September 2003 83

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

84

ImageHandle
The image handle of the agent that is allocating the memory resource. Type

EFI_HANDLE is defined in InstallProtocolInterface () inthe EFI .10
Specification.

DeviceHandle
The device handle for which the memory resource is being allocated. If the memory
resource is not being allocated for a device that has an associated device handle, then
this parameter is optional and may be NULL. Type EFI_HANDLE is defined in
InstallProtocolInterface () inthe EFI 1.10 Specification.

Description

The AllocateMemorySpace () function searches for a memory range of type
GecdMemoryType and converts the discovered memory range from the unallocated state to the
allocated state. The parameters GecdAllocateType, Alignment, Length, and
BaseAddress specify the manner in which the GCD memory space map is searched. If a
memory range is found that meets the search criteria, then the base address of the memory range is
returned in BaseAddress, and EFI_SUCCESS is returned. ITmageHandle and
DeviceHandle are used to convert the memory range from the unallocated state to the allocated
state. TmageHandle identifies the image that is calling AllocateMemorySpace (), and
DeviceHand]le identifies the device that ImageHandle is managing that requires the memory
range. DeviceHandle is optional, because the device that TmageHandle is managing might
not have an associated device handle. If a memory range meeting the search criteria cannot be
found, then EFI_NOT FOUND is returned.

If GedAllocateTypeis EfiGedAllocateAnySearchBottomUp, then the GCD memory
space map is searched from the lowest address up to the highest address looking for unallocated
memory ranges of Length bytes beginning on a boundary specified by A1ignment that matches
GcdMemoryType.

If GedAllocateTypeis EfiGecdAllocateAnySearchTopDown, then the GCD memory
space map is searched from the highest address down to the lowest address looking for unallocated
memory ranges of Length bytes beginning on a boundary specified by A1 ignment that matches
GcdMemoryType.

If GedAllocateType is EfiGcdAllocateMaxAddressSearchBottomUp, then the GCD
memory space map is searched from the lowest address up to BaseAddress looking for
unallocated memory ranges of Length bytes beginning on a boundary specified by A1 ignment
that matches GedMemoryType.

If GedAllocateType is EfiGcdAllocateMaxAddressSearchTopDown, then the GCD
memory space map is searched from BaseAddress down to the lowest address looking for
unallocated memory ranges of Length bytes beginning on a boundary specified by A1ignment
that matches GedMemoryType.

If GedAllocateTypeis EfiGecdAllocateAddress, then the GCD memory space map is
checked to see if the memory range starting at BaseAddress for Length bytes is of type
GecdMemoryType, unallocated, and begins on a the boundary specified by A1ignment.

September 2003 Version 0.9

n
In e ' Draft for Review Services — DXE Services

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single
memory descriptor.

If Length is zero, then EFI_INVALID PARAMETER is returned.
If BaseAddress is NULL, then EFI_INVALID PARAMETER is returned.
If ImageHandle is NULL, then EFI_INVALID PARAMETER is returned.

If GedMemoryType is not EfiGecdMemoryTypeNonExistent,
EfiGcdMemoryTypeReserved, EfiGecdMemoryTypeSystem Memory, or
EfiGcdMemoryTypeMemoryMappedIo, then EFI INVALID PARAMETER is returned.

If GedAlocateType is less than zero, or GedAllocateType is greater than or equal to
EfiGcdMaxAllocateType then EFI INVALID PARAMETER is returned.

If there are not enough system resources available to allocate the memory range, then
EFI_OUT OF RESOURCES is returned.

Related Definitions

//***

// EFI_GCD ALLOCATE TYPE
//***

typedef enum {
EfiGcdAllocateAnySearchBottomUp,
EfiGcdAllocateMaxAddressSearchBottomUp,
EfiGcdAllocateAddress,
EfiGcdAllocateAnySearchTopDown,
EfiGcdAllocateMaxAddressSearchTopDown,
EfiGcdMaxAllocateType

} EFI GCD ALLOCATE TYPE;

Status Codes Returned

EFI_SUCCESS The memory resource was allocated from the global coherency
domain of the processor.

EFI_INVALID_PARAMETER GcdAllocateType s invalid.
EFI_INVALID_PARAMETER GcdMemoryType is invalid.
EFI_INVALID_PARAMETER Lengthi s zero.
EFI_INVALID_PARAMETER BaseAddress is NULL.
EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough system resources to allocate the memory
resource from the global coherency domain of the processor.

EFI_NOT_FOUND The memory resource request could not be satisfied.

Version 0.9 September 2003 85

n
Driver Execution Environment Draft for Review Intel
Core Interface Specification (DXE CIS)

FreeMemorySpace()

Summary

This service frees nonexistent memory, reserved memory, system memory, or memory-mapped I/O
resources from the global coherency domain of the processor.

Prototype

EFI_STATUS

FreeMemorySpace (
IN EFI PHYSICAL ADDRESS BaseAddress,
IN UINT64 Length
) ;

Parameters
BaseAddress

The physical address that is the start address of the memory resource being freed.
Type EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the EFI 1.10 Specification.

Length

The size in bytes of the memory resource range that is being freed.

Description

The FreeMemorySpace () function converts the memory range specified by BaseAddress
and Length from the allocated state to the unallocated state. If this conversion is successful, then
EFI_ SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single
memory descriptor.

If Length is zero, then EFI_INVALID PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were not
allocated on previous calls to AllocateMemorySpace (), then EFI_NOT FOUND is returned.

If there are not enough system resources available to free the memory range, then
EFI_OUT OF RESOURCES is returned.

86 September 2003 Version 0.9

n
In e ' Draft for Review Services — DXE Services

Status Codes Returned

EFI_SUCCESS The memory resource was freed from the global coherency
domain of the processor.

EFI_INVALID_PARAMETER Lengthi s zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the
memory resource range specified by BaseAddress and
Length.

EFI_NOT_FOUND The memory resource range specified by BaseAddress and

Length was not allocated with previous calls to
AllocateMemorySpace ().

EFI_OUT_OF_RESOURCES There are not enough system resources to free the memory
resource from the glob