
  

 

Intel® Platform Innovation Framework 
for EFI  

PCI Host Bridge Resource Allocation 
Protocol Specification 

 
 
 
 
 
 

Version 0.9 
August 9, 2004 



PCI Host Bridge Resource Allocation Protocol Specification   

ii August 2004 Version 0.9 

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY 
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY 
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.  Except for a limited copyright license 
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual 
property rights is granted herein. 

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information 
in this specification.  Intel does not warrant or represent that such implementation(s) will not infringe such rights. 

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." 
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising 
from future changes to them.  

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design 
products based on this document. 

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United 
States and other countries. 

* Other names and brands may be claimed as the property of others. 

Copyright  2000–2004, Intel Corporation. 

Intel order number xxxxxx-001 

 
 



  

Version 0.9 August 2004 iii 

Revision History 
Revision Revision History Date 

0.9 First public release. 8/9/04 

   

 



PCI Host Bridge Resource Allocation Protocol Specification   

iv August 2004 Version 0.9 

 
 



  

Version 0.9 August 2004 v 

Contents 

1 Introduction .......................................................................................................7 
Overview ............................................................................................................................... 7 
Conventions Used in This Document .................................................................................... 7 

Data Structure Descriptions .......................................................................................... 7 
Protocol Descriptions .................................................................................................... 8 
Procedure Descriptions ................................................................................................ 8 
Pseudo-Code Conventions ........................................................................................... 9 
Typographic Conventions ............................................................................................. 9 

2 Design Discussion ......................................................................................... 11 
Introduction ......................................................................................................................... 11 
PCI Terms Used in This Document ..................................................................................... 11 
PCI Host Bridge Resource Allocation Protocol .................................................................... 14 

PCI Host Bridge Resource Allocation Protocol Overview ............................................ 14 
Host Bus Controllers ................................................................................................... 14 
Producing the PCI Host Bridge Resource Allocation Protocol ..................................... 15 
Required PCI Protocols .............................................................................................. 16 
Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL ................................... 17 

Sample PCI Architectures ................................................................................................... 17 
Sample PCI Architectures Overview ........................................................................... 17 
Desktop System with 1 PCI Root Bridge ..................................................................... 18 
Server System with 4 PCI Root Bridges ..................................................................... 18 
Server System with 2 PCI Segments .......................................................................... 19 
Server System with 2 PCI Host Buses ........................................................................ 20 

ISA Aliasing Considerations ................................................................................................ 21 
Programming of Standard PCI Configuration Registers ....................................................... 22 
Sample Implementation ....................................................................................................... 24 

3 Code Definitions ............................................................................................. 27 
Introduction ......................................................................................................................... 27 
PCI Host Bridge Resource Allocation Protocol .................................................................... 28 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL ...................... 28 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPhase() 33 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 

GetNextRootBridge() .................................................................................... 37 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 

GetAllocAttributes() ...................................................................................... 39 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 

StartBusEnumeration() ................................................................................. 41 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 

SetBusNumbers() ......................................................................................... 43 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 

SubmitResources() ...................................................................................... 45 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 

GetProposedResources() ............................................................................. 47 



PCI Host Bridge Resource Allocation Protocol Specification   

vi August 2004 Version 0.9 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
PreprocessController() ................................................................................. 50 

 

Figures 
Figure 2-1.  Host Bus Controllers ........................................................................................ 15 
Figure 2-2.  Producing the PCI Host Bridge Resource Allocation Protocol .......................... 16 
Figure 2-3.  Desktop System with 1 PCI Root Bridge .......................................................... 18 
Figure 2-4.  Server System with 4 PCI Root Bridges ........................................................... 19 
Figure 2-5.  Server System with 2 PCI Segments ................................................................ 20 
Figure 2-6.  Server System with 2 PCI Host Buses ............................................................. 20 

 

Tables 
Table 2-1. Standard PCI Devices – Header Type 0 ....................................................... 22 
Table 2-2. PCI-to-PCI Bridge – Header Type 1 ............................................................. 23 
Table 3-1. ACPI 2.0 QWORD Address Space Descriptor Usage .................................. 30 
Table 3-2. ACPI 2.0 End Tag Usage ............................................................................. 31 
Table 3-3. I/O Resource Flag (Resource Type = 1) Usage ............................................ 32 
Table 3-4. Memory Resource Flag (Resource Type = 0) Usage .................................... 32 
Table 3-5. ACPI 2.0 Resource Descriptor Field Values for  

StartBusEnumeration() ........................................................................ 41 
Table 3-6. ACPI 2.0 Resource Descriptor Field Values for SetBusNumbers() ........... 43 
Table 3-7. ACPI 2.0 Resource Descriptor Field Values for SubmitResources() ....... 46 
Table 3-8. ACPI 2.0 Resource Descriptor Field Values for  

GetProposedResources() ...................................................................... 48 
 
 
 



  

Version 0.9 August 2004 7 

1 
Introduction 

Overview 
This specification defines the core code and services that are required for an implementation of the 
PCI Host Bridge Resource Allocation Protocol of the Intel® Platform Innovation Framework for 
EFI (hereafter referred to as the "Framework"). This protocol is used by a PCI bus driver to 
program the PCI host bridge and configure the root PCI buses. The registers inside the PCI host 
bridge that control root PCI bus configuration are not governed by the PCI specification and vary 
from chipset to chipset. The PCI Host Bridge Resource Allocation Protocol is therefore specific to a 
particular chipset. 
This specification does the following: 
• Describes the basic components of the PCI Host Bridge Resource Allocation Protocol 
• Describes several sample PCI architectures and a sample implementation of the PCI Host 

Bridge Resource Allocation Protocol 
• Provides code definitions for the PCI Host Bridge Resource Allocation Protocol and the PCI-

host-bridge-related type definitions that are architecturally required by the Intel® Platform 
Innovation Framework for EFI Architecture Specification  

The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL does not describe 
platform policies. The platform policies are described by the EFI_PCI_PLATFORM_PROTOCOL 
and are outside the scope of this specification. The EFI_PCI_PLATFORM_PROTOCOL is defined 
in the Intel® Platform Innovation Framework for EFI PCI Platform Support Specification.  

Conventions Used in This Document 
This document uses the typographic and illustrative conventions described below. 

Data Structure Descriptions 
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines.  This 
distinction means that the low-order byte of a multibyte data item in memory is at the lowest 
address, while the high-order byte is at the highest address.  Processors of the Intel® Itanium® 
processor family may be configured for both “little endian” and “big endian” operation.  All 
implementations designed to conform to this specification will use “little endian” operation. 
In some memory layout descriptions, certain fields are marked reserved.  Software must initialize 
such fields to zero and ignore them when read.  On an update operation, software must preserve 
any reserved field.   
The data structures described in this document generally have the following format: 

STRUCTURE NAME: The formal name of the data structure. 

Summary:   A brief description of the data structure. 

Prototype: A “C-style” type declaration for the data structure. 



PCI Host Bridge Resource Allocation Protocol Specification   

8 August 2004 Version 0.9 

Parameters:   A brief description of each field in the data structure prototype. 

Description: A description of the functionality provided by the data structure, 
including any limitations and caveats of which the caller should 
be aware. 

Related Definitions: The type declarations and constants that are used only by 
this data structure. 

Protocol Descriptions 
The protocols described in this document generally have the following format: 

Protocol Name: The formal name of the protocol interface. 

Summary:   A brief description of the protocol interface. 

GUID:   The 128-bit Globally Unique Identifier (GUID) for the protocol 
interface. 

Protocol Interface Structure: 
A “C-style” data structure definition containing the procedures 
and data fields produced by this protocol interface. 

Parameters:   A brief description of each field in the protocol interface 
structure. 

Description: A description of the functionality provided by the interface, 
including any limitations and caveats of which the caller should 
be aware. 

Related Definitions: The type declarations and constants that are used in the protocol 
interface structure or any of its procedures. 

Procedure Descriptions 
The procedures described in this document generally have the following format: 

ProcedureName(): The formal name of the procedure. 

Summary:   A brief description of the procedure. 

Prototype: A “C-style” procedure header defining the calling sequence. 

Parameters:   A brief description of each field in the procedure prototype. 

Description: A description of the functionality provided by the interface, 
including any limitations and caveats of which the caller should 
be aware. 

Related Definitions: The type declarations and constants that are used only by 
this procedure. 



  Introduction 

Version 0.9 August 2004 9 

Status Codes Returned: A description of any codes returned by the interface.  The 
procedure is required to implement any status codes listed in this 
table.  Additional error codes may be returned, but they will not 
be tested by standard compliance tests, and any software that 
uses the procedure cannot depend on any of the extended error 
codes that an implementation may provide. 

Pseudo-Code Conventions 
Pseudo code is presented to describe algorithms in a more concise form.  None of the algorithms in 
this document are intended to be compiled directly.  The code is presented at a level corresponding 
to the surrounding text.   
In describing variables, a list is an unordered collection of homogeneous objects.  A queue is an 
ordered list of homogeneous objects.  Unless otherwise noted, the ordering is assumed to be First In 
First Out (FIFO). 
Pseudo code is presented in a C-like format, using C conventions where appropriate.  The coding 
style, particularly the indentation style, is used for readability and does not necessarily comply with 
an implementation of the Extensible Firmware Interface Specification. 

Typographic Conventions 
This document uses the typographic and illustrative conventions described below: 
Plain text The normal text typeface is used for the vast majority of the descriptive 

text in a specification. 
Plain text (blue) In the online help version of this specification, any plain text that is 

underlined and in blue indicates an active link to the cross-reference. 
Click on the word to follow the hyperlink. Note that these links are not 
active in the PDF of the specification. 

Bold In text, a Bold typeface identifies a processor register name.  In other 
instances, a Bold typeface can be used as a running head within a 
paragraph. 

Italic In text, an Italic typeface can be used as emphasis to introduce a new 
term or to indicate a manual or specification name. 

BOLD Monospace Computer code, example code segments, and all prototype code 
segments use a BOLD Monospace typeface with a dark red color.  
These code listings normally appear in one or more separate paragraphs, 
though words or segments can also be embedded in a normal text 
paragraph.   

Bold Monospace  In the online help version of this specification, words in a 
Bold Monospace typeface that is underlined and in blue indicate an 
active hyperlink to the code definition for that function or type definition. 
 Click on the word to follow the hyperlink. Note that these links are not 
active in the PDF of the specification. Also, these inactive links in the 
PDF may instead have a Bold Monospace appearance that is 



PCI Host Bridge Resource Allocation Protocol Specification   

10 August 2004 Version 0.9 

underlined but in dark red. Again, these links are not active in the PDF of 
the specification. 

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder 
names for variable information that must be supplied (i.e., arguments). 

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red 
color but is not bold or italicized indicate pseudo code or example code. 
These code segments typically occur in one or more separate paragraphs. 

text text text In the PDF of this specification, text that is highlighted in yellow 
indicates that a change was made to that text since the previous revision 
of the PDF. The highlighting indicates only that a change was made 
since the previous version; it does not specify what changed. If text was 
deleted and thus cannot be highlighted, a note in red and highlighted in 
yellow (that looks like (Note: text text text.)) appears where the deletion 
occurred. 

See the master Framework glossary in the Framework Interoperability and Component 
Specifications help system for definitions of terms and abbreviations that are used in this document 
or that might be useful in understanding the descriptions presented in this document. 
See the master Framework references in the Interoperability and Component Specifications help 
system for a complete list of the additional documents and specifications that are required or 
suggested for interpreting the information presented in this document. 
The Framework Interoperability and Component Specifications help system is available at the 
following URL: 
http://www.intel.com/technology/framework/spec.htm 
 

http://www.intel.com/technology/framework/spec.htm�


  

Version 0.9 August 2004 11 

2 
Design Discussion 

Introduction 
This section provides background and design information for the PCI Host Bridge Resource 
Allocation Protocol. A PCI bus driver, running in the EFI Boot Services environment, uses this 
protocol to program PCI host bridge hardware. This protocol abstracts a PCI host bridge. In 
particular, functions for programming a PCI host bridge are defined here although other bus types 
may be supported in a similar fashion as extensions to this specification.  
This chapter discusses the following: 
• PCI terms that are used in this document 
• An overview of the PCI Host Bridge Resource Allocation Protocol 
• Sample PCI architectures 
• ISA aliasing considerations 
• Programming of standard PCI configuration registers 
• Sample implementation 

PCI Terms Used in This Document 
The following PCI terms are used throughout this document. See the Glossary in the master 
Framework help system for definitions of general Framework terms. 

coherency domain 
The address resources of a system as seen by a processor. It consists of both system memory 
and I/O space. 

HB 
Host bridge. See PCI host bridge. 

MWI 
Memory Write and Invalidate. See the PCI Local Bus Specification, revision 2.3, for more 
information; see Industry Specifications in the Framework master help system for the URL 
for the PCI SIG. 

PCI bus  
A generic term used to describe any PCI-like buses, including conventional PCI, PCI-X*, and 
PCI Express*. From a software standpoint, a PCI bus is collection of up to 32 physical PCI 
devices that share the same physical PCI bus. 



PCI Host Bridge Resource Allocation Protocol Specification   

12 August 2004 Version 0.9 

PCI bus driver  
Software that creates a handle for every PCI controller in the system and installs both the PCI 
I/O Protocol and the Device Path Protocol onto that handle. It may optionally perform PCI 
enumeration if resources have not already been allocated to all the PCI controllers. It also 
loads and starts any EFI drivers that are found in any PCI option ROMs that were discovered 
during PCI enumeration. 

PCI configuration space 
The configuration channel that is defined by PCI to configure PCI devices into the resource 
domain of the system. Each PCI device must produce a standard set of registers in the form of 
a PCI configuration header and can optionally produce device-specific registers. The registers 
are addressed via Type 0 or Type 1 PCI configuration cycles as described by the PCI 
Specification. The PCI configuration space can be shared across multiple PCI buses. On 
Intel® architecture-based systems, the PCI configuration space is accessed via I/O ports 
0xCF8 and 0xCFC. The PCI Express configuration space is accessed via a memory-mapped 
aperture. 

PCI controller  
A hardware components that is discovered by a PCI bus driver and is managed by a PCI 
device driver. This document uses the terms "PCI function" and "PCI controller" 
equivalently. 

PCI device  
A collection of up to 8 PCI functions that share the same PCI configuration space. A PCI 
device is physically connected to a PCI bus. 

PCI enumeration  
The process of assigning resources to all the PCI controllers on a given PCI host bridge. This 
process includes the following: 

• Assigning PCI bus numbers and PCI interrupts  
• Allocating PCI I/O resources, PCI memory resources, and PCI prefetchable memory 

resources  
• Setting miscellaneous PCI DMA values 
Typically, PCI enumeration is to be performed only once during the boot process.  

PCI function 
A controller that provides some type of I/O services. It consumes some combination of PCI 
I/O, PCI memory, and PCI prefetchable memory regions and the PCI configuration space. 
The PCI function is the basic unit of configuration for PCI. 



  Design Discussion 

Version 0.9 August 2004 13 

PCI host bridge 
The software abstraction that produces one or more PCI root bridges. All the PCI buses that 
are produced by a host bus controller are part of the same coherency domain. A PCI host 
bridge is an abstraction and may be made up of multiple hardware devices. Most systems can 
be modeled as having one PCI host bridge. This software abstraction is necessary while 
dealing with PCI resource allocation because resources that are assigned to one PCI root 
bridge depend on another and all the "related" PCI root bridges must be considered together 
during resource allocation. 

PCI root bridge 
A PCI root bridge that produces a root PCI bus. It bridges a root PCI bus and a bus that is not 
a PCI bus (e.g., processor local bus, InfiniBand* fabric). A PCI host bridge may have one or 
more root PCI bridges. Configurations of a root PCI bridge within a host bridge can have 
dependencies upon other root PCI bridges within the same host bridge. 

PCI segment 
A collection of up to 256 PCI buses that share the same PCI configuration space. A PCI 
segment is defined in section 6.5.6 of the ACPI 2.0 Specification as the _SEG object. The 
SAL_PCI_CONFIG_READ and SAL_PCI_CONFIG_WRITE procedures that are defined in 
chapter 9 of the Intel® Itanium® Processor Family System Abstraction Layer Specification 
define how to access the PCI configuration space in a system that supports multiple PCI 
segments; see Related Information from Intel in the master Framework help system for the 
URL for this specification. If a system supports only a single PCI segment, the PCI segment 
number is defined to be zero. The existence of PCI segments enables the construction of 
systems with greater than 256 PCI buses. 

PERR 
Parity Error. 

RB 
Root bridge. See PCI root bridge. 

root PCI bus 
A PCI bus that is not a child of another PCI bus. For every root PCI bus, there is an object in 
the ACPI name space with a Plug and Play (PNP) ID of "PNP0A03." Typical desktop 
systems include only one root PCI bus. 

SERR 
System error. 



PCI Host Bridge Resource Allocation Protocol Specification   

14 August 2004 Version 0.9 

PCI Host Bridge Resource Allocation Protocol 

PCI Host Bridge Resource Allocation Protocol Overview  
The PCI Host Bridge Resource Allocation Protocol is used by a PCI bus driver to program a PCI 
host bridge. The registers inside a PCI host bridge that control configuration of PCI root buses are 
not governed by the PCI specification and vary from chipset to chipset. The PCI Host Bridge 
Resource Allocation Protocol implementation is therefore specific to a particular chipset.   
Each PCI host bridge is comprised of one or more PCI root bridges, and there are hardware 
registers associated with each PCI root bridge. These registers control the bus, I/O, and memory 
resources that are decoded by the PCI root bus that the PCI root bridge produces and all the PCI 
buses that are children of that PCI root bus. 
The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL allows for future 
innovation of the chipsets. It abstracts the PCI bus driver from the chipset details. This design 
allows system designers to make changes to the host bridge hardware without impacting a platform-
independent PCI bus driver. 
See PCI Host Bridge Resource Allocation Protocol in Code Definitions for the definition of 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 

Host Bus Controllers 
A platform can be viewed as the following: 
• A set of processors  
• A set of core chipset components that may produce one or more host buses 
The figure below shows a platform with n processors (CPUs) and a set of core chipset components 
that produce m host bridges (HBs). 
Most systems with one PCI host bus controller will contain a single instance of the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. More complex systems 
may contain multiple instances of this protocol.   

 NOTE 
There is no relationship between the number of chipset components in a platform and the number of 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instances. This protocol is 
an abstraction from a software point of view. This protocol is attached to the device handle of a 
PCI host bus controller, which itself is composed of one or more PCI root bridges. A PCI root 
bridge is a chipset component(s) that produces a physical PCI bus whose parent is not another 
physical PCI bus.  

 



  Design Discussion 

Version 0.9 August 2004 15 

CPU 1 CPU 2 CPU n

Front Side Bus

Core Chipset Components

HB 1 HB 2 HB m

 

Figure 2-1.  Host Bus Controllers 

Producing the PCI Host Bridge Resource Allocation Protocol 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instances are produced by 
DXE drivers—most often by early DXE drivers. 
The figure below shows how the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is used to identify the 
associated PCI root bridges. After the steps in the figure are completed, the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL can then be queried to 
identify the device handles of the associated PCI root bridges. See the EFI 1.10 Specification for 
details of the PCI Root Bridge I/O Protocol.  



PCI Host Bridge Resource Allocation Protocol Specification   

16 August 2004 Version 0.9 

DXE driver produces
PCI Host Bridge

Resource Allocation
Protocol.

Protocol is placed on
the device handle

corresponding to the
PCI host bridge.

Same driver creates
device handles for all
associated PCI root

bridges.

Same driver installs an
instance of the

PCI Root Bridge
I/O Protocol on each

handle.
 

Figure 2-2.  Producing the PCI Host Bridge Resource Allocation Protocol 

Required PCI Protocols 
The following protocols are mandatory if the system supports PCI devices or slots: 
• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL  
• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  
See the EFI 1.10 Specification for more information on the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. 



  Design Discussion 

Version 0.9 August 2004 17 

Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL 
It is expected, although not necessary, that a chipset-aware driver will produce the following 
protocol instances: 
• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL  
• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  
Care has been taken to avoid overlap between the member functions of the two protocols. For 
example, EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL does not describe 
the SegmentNumber or the final resource assignment for a root bridge, because these attributes 
are available using the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Both protocols contain links 
to the associated instances of the other protocols, as follows:  
• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL: Includes the handle of the PCI host bridge that 

is associated with the root bridge.  
• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL: Provides a member 

function to retrieve the handles of the associated root bridges.  
The definition of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL attempts 
to maintain compatibility with the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL definition.  
See the EFI 1.10 Specification for more information on the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. 

Sample PCI Architectures 

Sample PCI Architectures Overview 
The PCI Host Bridge Resource Allocation Protocol is a protocol that is designed to provide a 
software abstraction for a wide variety of PCI architectures. This section provides examples of the 
following PCI architectures: 
• Desktop system with 1 PCI root bridge 
• Server system with 4 PCI root bridges 
• Server system with 2 PCI segments 
• Server system with 2 PCI host buses 
This section is not intended to be an exhaustive list of the PCI architectures that the PCI Host 
Bridge Resource Allocation Protocol can support. Instead, it is intended to show the flexibility of 
this protocol to adapt to current and future platform designs. 



PCI Host Bridge Resource Allocation Protocol Specification   

18 August 2004 Version 0.9 

Desktop System with 1 PCI Root Bridge 
The figure below shows an example of a PCI host bus with one PCI root bridge. This PCI root 
bridge produces one PCI local bus that can contain PCI devices on the motherboard and/or PCI 
slots. This setup would be typical of a desktop system. In this system, the PCI root bridge needs 
minimal setup. Typically, the PCI root bridge will decode the following: 
• The entire bus range on Segment 0 
• The entire I/O space of the processor  
• All the memory above the top of system memory 
The firmware for this platform would produce the following: 
• One instance of the PCI Host Bridge Resource Allocation Protocol  
• One instance of PCI Root Bridge I/O Protocol 
See the EFI 1.10 Specification for details of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. 

Core Chipset Components

PCI Host Bridge

PCI Root Bridge

 

Figure 2-3.  Desktop System with 1 PCI Root Bridge 

Server System with 4 PCI Root Bridges 
The figure below shows an example of a larger server with one PCI host Bus with four PCI root 
bridges (RBs). The PCI devices that are attached to the PCI root bridges are all part of the same 
coherency domain, which means they share the following: 
• A common PCI I/O space 
• A common PCI memory space 
• A common PCI prefetchable memory space 
As a result, each PCI root bridge must get resources out of a common pool. Each PCI root bridge 
produces one PCI local bus that can contain PCI devices on the motherboard or PCI slots. The 
firmware for this platform would produce the following: 
• One instance of the PCI Host Bridge Resource Allocation Protocol  
• Four instances of the PCI Root Bridge I/O Protocol 
See the EFI 1.10 Specification for details of the  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. 



  Design Discussion 

Version 0.9 August 2004 19 

Core Chipset Components

PCI Host Bridge

PCI RB

PCI

PCI RB

PCI

PCI RB

PCI

PCI RB

PCI
 

Figure 2-4.  Server System with 4 PCI Root Bridges 

Server System with 2 PCI Segments 
The figure below shows an example of a server with one PCI host bus and two PCI root bridges 
(RBs). Each of these PCI root bridges is on a different PCI segment, which allows the system to 
have up to 512 PCI buses. A single PCI segment is limited to 256 PCI buses. These two segments 
do not share the same PCI configuration space, but they do share the following, which is why they 
can be described with a single PCI host bus: 
• A common PCI I/O space 
• A common PCI memory space 
• A common PCI prefetchable memory space 
The firmware for this platform would produce the following: 
• One instance of the PCI Host Bridge Resource Allocation Protocol  
• Two instances of the PCI Root Bridge I/O Protocol 
See the EFI 1.10 Specification for details of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. 



PCI Host Bridge Resource Allocation Protocol Specification   

20 August 2004 Version 0.9 

Core Chipset Components

PCI Host Bridge

PCI RB

PCI Segment 0

PCI RB

PCI Segment 1
 

Figure 2-5.  Server System with 2 PCI Segments 

Server System with 2 PCI Host Buses 
The figure below shows a server system with two PCI host buses and one PCI root bridge (RB) per 
PCI host bus. Like the figure in Server System with 2 PCI Segments, this system supports up to 512 
PCI buses, but the following resources are not shared between the two PCI root bridges:  
• PCI I/O space 
• PCI memory space 
• PCI prefetchable memory space 
The firmware for this platform would produce the following: 
• Two instances of the PCI Host Bridge Resource Allocation Protocol  
• Two instances of the PCI Root Bridge I/O Protocol 
See the EFI 1.10 Specification for details of the  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. 

Core Chipset Components

PCI Host Bus 0

PCI RB

PCI Segment 0

PCI Host Bus 1

PCI RB

PCI Segment 1
 

Figure 2-6.  Server System with 2 PCI Host Buses 



  Design Discussion 

Version 0.9 August 2004 21 

ISA Aliasing Considerations 
The PCI host bridge driver will handle the ISA alias addresses based on the platform policy. The 
platform communicated the policy to the PCI host bridge driver using the 
EFI_PCI_PLATFORM_PROTOCOL. If the PCI host bridge driver cannot locate an instance of 
EFI_PCI_PLATFORM_PROTOCOL, it will not reserve the ISA alias addresses. The PCI bus 
driver is not aware of this policy and probes devices to gather resource requirements regardless of 
this policy. The EFI_PCI_PLATFORM_PROTOCOL is defined in the Intel® Platform Innovation 
Framework for EFI PCI Platform Support Specification.  

 NOTE 
When it is started, a PCI device may request that the ISA alias ranges be forwarded to it through 
the EFI_PCI_IO_PROTOCOL.Attributes() member function by setting the input parameter 
Attributes to EFI_PCI_IO_ATTRIBUTE_ISA_IO. If the ISA alias I/O addresses are not 
reserved during enumeration, such a request may fail because one or more PCI devices may be 
occupying aliased addresses.  
If the ISA alias I/O addresses are to be reserved during enumeration, the PCI host bridge driver is 
responsible for allocating four times the amount of the requested I/O. The PCI bus driver obtains 
the resources by calling one of the following member functions: 
• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 

GetProposedResources()  
• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()  
The PCI host bridge driver sets the _RNG bit to communicate the availability of the ISA alias range 
to the PCI bus driver. If the _RNG flag is set, the PCI bus enumerator is not allowed to allocate the 
ISA alias addresses to any PCI device. See Table 3-3 in the "Description" section of 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL for the definition of the 
_RNG flag. In this case, a PCI device’s request to turn on aliasing will succeed because one or 
more PCI devices may be occupying aliased addresses. The _RNG flag is the only aspect of the 
protocol interface structure that is affected by ISA aliasing. 



PCI Host Bridge Resource Allocation Protocol Specification   

22 August 2004 Version 0.9 

Programming of Standard PCI Configuration Registers 
This topic defines design guidelines for programming PCI configuration registers in the standard 
PCI header. It defines roles and responsibilities of various drivers.  
Click on the following links to jump directly to the table listed: 
• Table 2-1:  Standard PCI Devices – Header Type 0 
• Table 2-2:  PCI-to-PCI Bridge – Header Type 1 

Table 2-1. Standard PCI Devices – Header Type 0 
PCI Configuration Register Bits Programmed By 

PCI command register – I/O, Memory, and 
Bus Master enable 

PCI bus driver. This driver sets these values as requested by 
the device driver through the EFI_PCI_IO_PROTOCOL 
member functions. 

PCI command register – SERR, PERR, 
MWI, Special Cycle Enable, Fast Back to 
Back Enable 

Chipset/platform-specific code 

PCI command register – VGA palette snoop PCI device driver. 

Cache line size Chipset/platform code to match the processor’s cache line size 
or some other value. 

Latency timer PCI bus driver. This driver programs this register to default 
values before it sends the 
EfiPciBeforeResourceCollection notification. 
For PCI devices, this value is 0x20. PCI-X* devices come out 
of reset with this register set to 0x40. The PCI bus driver does 
not change the setting. The PCI bus driver will also make sure 
that the default value for PCI devices is consistent with the 
MIN_LAT and MAX_LAT register values in the device’s PCI 
configuration space. 

Chipset/platform code can overwrite this register during the 
EfiPciBeforeResourceCollection notification 
call. The new value may come from the end user using 
configuration options. 

The device driver may overwrite this value during its own 
Start() function. 

BIST PCI bus driver. 

Base address registers PCI bus driver. 

Interrupt line Not touched. 

Subsystem vendor ID and Device ID Chipset/platform code. Per the PCI Specification, these 
registers must get programmed before system software 
accesses the device. Some noncompliant or chipset devices 
may require that these registers be programmed during the 
preboot phase.  

 



  Design Discussion 

Version 0.9 August 2004 23 

Table 2-2. PCI-to-PCI Bridge – Header Type 1 
PCI Configuration Register Bits Programmed By 

PCI command register – I/O, Memory, Bus 
Master enable, VGA palette snoop 

PCI bus driver. This driver sets these values as requested by 
the device driver through the EFI_PCI_IO_PROTOCOL 
member functions. 

PCI command register – SERR, PERR, MWI, 
Fast Back to Back Enable, Special Cycle 
Enable 

Chipset/platform-specific code. 

Cache line size Chipset/platform code to match the processor’s cache line size 
or some other value. 

Latency timer PCI bus driver. This driver programs to default values before it 
sends the EfiPciBeforeResourceCollection 
notification. For PCI devices, this value is 0x20. PCI-X devices 
come out of reset with this register set to 0x40.The PCI bus 
driver does not change the setting. The PCI bus driver will also 
make sure that the default value for PCI devices is consistent 
with the MIN_LAT and MAX_LAT register values in the 
device’s PCI configuration space. 

Chipset/platform code can overwrite this register during the 
EfiPciBeforeResourceCollection notification 
call. The new value may come from the end user using 
configuration options. 

Base addresses registers, bus, I/O, and 
memory aperture registers 

PCI bus driver. 

Interrupt line Not touched. 

Bridge control register – ISA Enable, VGA 
Enable 

PCI bus driver. This driver sets these values as requested by 
the device driver through the EFI_PCI_IO_PROTOCOL 
member functions. 

Bridge control register – PERR Enable, 
SERR Enable,  Fast Back to Back, Discard 
Timers 

Chipset/platform-specific code. 

Bridge control register – Secondary Bus 
Reset 

PCI bus driver is permitted to reset the secondary bus during 
enumeration. The chipset/platform code may also reset the 
secondary bus during the 
EfiPciBeforeChildBusEnumeration 
notification. 

 



PCI Host Bridge Resource Allocation Protocol Specification   

24 August 2004 Version 0.9 

Sample Implementation 
Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host 
bridge. A sample algorithm for PCI enumeration is described below to clarify some of the finer 
points of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. Actual 
implementations may vary. Calls to 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
PreprocessController() are not included for the sake of clarity. 
Unless noted otherwise, all functions that are listed below are member functions of the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.   
1. If the hardware supports dynamically changing the number of PCI root buses or changing the 

segment number that is associated with a PCI root bus, such changes must be completed before 
the next steps.  

2. The chipset/platform driver(s) creates a device handle for the PCI host bridges in the system(s) 
and installs an instance of the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL on that handle. 

3. The chipset/platform driver(s) creates a device handle for every PCI root bridge and installs the 
following on that handle: 
• An instance of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  
• An instance of EFI_DEVICE_PATH_PROTOCOL  
It is expected that a single driver will handle a PCI host bridge, as well as all the associated PCI 
root bridges. The ParentHandle field of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL 
must be initialized with the handle for the PCI host bridge that contains an instance of the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
 

...Other initialization activities take place. 
4. The EFI_DRIVER_BINDING_PROTOCOL.Start() function of the PCI bus driver is 

called and is passed the device handle of a PCI root bridge. The 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is 
associated with the PCI root bridge can be found by using the ParentHandle field of 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL must be present in 
Framework-compliant systems. 

... 
5. Begin the PCI enumeration process. The order in which the various member functions are 

called cannot be changed. Between any two steps, there can be any amount of implementation-
specific code as long as it does not call any member functions of 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. This requirement is 
necessary to keep the state machines in the PCI host bridge allocation driver and the PCI bus 
enumerator in sync. 

6. Notify the host bridge driver that PCI enumeration is about to begin by calling 
NotifyPhase (EfiPciHostBridgeBeginEnumeration). This member function 
must be the first one that gets called. PCI enumeration has two steps:  bus enumeration and 
resource enumeration. 



  Design Discussion 

Version 0.9 August 2004 25 

7. Notify the host bridge driver that bus enumeration is about to begin by calling 
NotifyPhase (EfiPciHostBridgeBeginBusAllocation). 

8. Do the following for every PCI root bridge handle: 
a. Call StartBusEnumeration (This,RootBridgeHandle). 
b. Make sure each PCI root bridge handle supports the 

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. 
c. Allocate memory to hold resource requirements. These resources can be two resource trees: 

one to hold bus requirements and another to hold the I/O and memory requirements. 
d. Call GetAllocAttributes() to get the attributes of this PCI root bridge. This 

information is used to combine different types of memory resources in the next step. 
e. Scan all the devices in the specified bus range and on the specified segment. If it is a PCI-

to-PCI bridge, update the bus numbers and program the bus number registers in the PCI-to-
PCI bridge hardware. If it is an ordinary device, collect the resource request and add up all 
of these requests in multiple pools (e.g., I/O, 32-bit prefetchable memory). Combine 
different types of memory requests at an appropriate level based on the PCI root bridge 
attributes. Update the resource requirement information accordingly. On every PCI root 
bridge, reserve space to cover the largest expansion ROMs on that bus, which will allow 
the PCI bus driver to retrieve expansion ROMs from the PCI card or device without having 
to reprogram the PCI host bridge. Because the memory and I/O resource collection step 
does not call any member function of 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL, it can be 
performed at a later time. 

f. Once the number of PCI buses under this PCI root bridge is known, call 
SetBusNumbers() with this information. 

9. Notify the host bridge driver that the bus allocation phase is over by calling 
NotifyPhase (EfiPciHostBridgeEndBusAllocation). 

10. Notify the host bridge driver that resource allocation is about to begin by calling 
NotifyPhase (EfiPciHostBridgeBeginResourceAllocation). 

11. For every PCI root bridge handle, call SubmitResources(). The Configuration 
information is derived from the resource requirements that were computed in step 8 above. 

12. Call NotifyPhase (EfiPciHostBridgeAllocateResources) to allocate the 
necessary resources. This call should not be made unless resource requirements for all the PCI 
root bridges have been submitted. If the call succeeds, go to next step. Otherwise, there are two 
options: 
a. Make do with the smaller ranges.  
b. Call GetProposedResources() to retrieve the proposed settings and examine the 

differences. Prioritize various requests and drop lower-priority requests. Call 
NotifyPhase (EfiPciHostBridgeFreeResources) to undo the previous 
allocation. Go back to step 11 with reduced requirements, which includes resubmitting 
requests for all the root bridges. 

13. Call NotifyPhase (EfiPciHostBridgeSetResources) to program the hardware. 
At this point, the decode logic in this host bridge is fully set up. 



PCI Host Bridge Resource Allocation Protocol Specification   

26 August 2004 Version 0.9 

14. Do the following for every root bridge handle: 
a. Obtain the resource range that is assigned to a PCI root bridge by calling the 

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function on 
that handle. 

b. From the resource range that is assigned to the PCI root bridge, assign resources to all the 
devices. Program the Base Address Registers (BARs) in all the PCI functions and decode 
registers in PCI-to-PCI bridges. If a PCI device has a PCI option ROM, copy the contents 
to a buffer in memory. It is possible to defer the BAR programming for a PCI controller 
until a connect request for the device is received. 

c. Create a device handle for each PCI device as required. 
d. Install an instance of EFI_PCI_IO_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL 

on each of these handles. 
15. Notify the host bridge driver that resource allocation is complete by calling 

NotifyPhase (EfiPciHostBridgeEndResourceAllocation).  
16. Deallocate any temporary buffers. 
 
Looping on PCI root bridges is accomplished with the following algorithm: 
RootBridgeHandle = NULL;  
while (GetNextRootBridge(RootBridgeHandle) == EFI_SUCCESS) { 
    . . . 
} 

 



  

Version 0.9 August 2004 27 

3 
Code Definitions 

Introduction 
This section contains the basic definitions of the PCI Host Bridge Resource Allocation Protocol. 
The following protocol is defined in this section: 
• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL  
This section also contains the definitions for additional data types and structures that are 
subordinate to the structures in which they are called. The following types or structures can be 
found in "Related Definitions" of the parent function definition: 
• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE  
• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES  
• EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE  



PCI Host Bridge Resource Allocation Protocol Specification   

28 August 2004 Version 0.9 

PCI Host Bridge Resource Allocation Protocol 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL 

Summary 
Provides the basic interfaces to abstract a PCI host bridge resource allocation. This protocol is 
mandatory if the system includes PCI devices. 

GUID 
#define EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GUID \ 
  { 
0xCF8034BE,0x6768,0x4d8b,0xB7,0x39,0x7C,0xCE,0x68,0x3A,0x9F,0xBE 
} 

Protocol Interface Structure 
typedef struct _EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL { 
  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_NOTIFY_PHASE 
                                         NotifyPhase; 
  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_NEXT_ROOT_BRIDGE 
                                         GetNextRootBridge; 
  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_ATTRIBUTES 
                                         GetAllocAttributes;  
  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_START_BUS_ENUMERATION 
                                         StartBusEnumeration; 
  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SET_BUS_NUMBERS 
                                         SetBusNumbers; 
  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SUBMIT_RESOURCES 
                                         SubmitResources; 
  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_PROPOSED_RESOURCES 
                                         GetProposedResources; 
  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_PREPROCESS_CONTROLLER 
                                         PreprocessController; 
} EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL; 

Parameters 
NotifyPhase 

The notification from the PCI bus enumerator that it is about to enter a certain phase 
during the enumeration process. See the NotifyPhase() function description. 

GetNextRootBridge   

Retrieves the device handle for the next PCI root bridge that is produced by the host 
bridge to which this instance of the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is attached. 
See the GetNextRootBridge() function description. See PCI Terms Used in 
This Document for a definition of a PCI root bridge.  



  Code Definitions 

Version 0.9 August 2004 29 

GetAllocAttributes  

Retrieves the allocation-related attributes of a PCI root bridge. See the 
GetAllocAttributes() function description. 

StartBusEnumeration  

Sets up a PCI root bridge for bus enumeration. See the 
StartBusEnumeration() function description. 

SetBusNumbers  

Sets up the PCI root bridge so that it decodes a specific range of bus numbers. See 
the SetBusNumbers() function description. 

SubmitResources     

Submits the resource requirements for the specified PCI root bridge. See the 
SubmitResources() function description. 

GetProposedResources  

Returns the proposed resource assignment for the specified PCI root bridges. See the 
GetProposedResources() function description. 

PreprocessController 

Provides hooks from the PCI bus driver to every PCI controller (device/function) at 
various stages of the PCI enumeration process that allow the host bridge driver to 
preinitialize individual PCI controllers before enumeration. See the 
PreprocessController() function description. 

Description 
The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL provides the basic 
resource allocation services to the PCI bus driver. There is one 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance for each PCI host 
bridge in a system. The following will typically have only one PCI host bridge: 
• Embedded systems 
• Desktops 
• Workstations  
• Most servers  
High-end servers may have multiple PCI host bridges. A PCI bus driver that wishes to manage a 
PCI bus in a system will have to retrieve the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is associated 
with the PCI bus to be managed. A device handle for a PCI host bridge will not contain an 
EFI_DEVICE_PATH_PROTOCOL instance because the PCI host bridge is a software abstraction 
and has no equivalent in the ACPI name space. 



PCI Host Bridge Resource Allocation Protocol Specification   

30 August 2004 Version 0.9 

All applicable member functions use ACPI 2.0 resource descriptors to describe resources. Using 
ACPI resource descriptors does the following: 
• Allows other types of resources to be described in the future because they are very generic in 

nature.  
• Avoids multiple structure definitions for describing resources.  
• Maintains compatibility with the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL definition.  
Only the following two resource descriptor types from the ACPI Specification may be used to 
describe the current resources that are allocated to a PCI root bridge:   
• QWORD Address Space Descriptor (ACPI 2.0, section 6.4.3.5.1) 
• End Tag (ACPI 2.0, section 6.4.2.8) 
The QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for 
dynamic or fixed resources. The configuration of a PCI root bridge is described with one or more 
QWORD Address Space Descriptors, followed by an End Tag. Table 3-1 and Table 3-2 below 
contain these two descriptor types. Table 3-3 and Table 3-4 define how resource-specific flags are 
used. See the ACPI Specification for details on the field values.  
Click on the links below to take you directly to each table: 
• Table 3-1:  ACPI 2.0 QWORD Address Space Descriptor Usage 
• Table 3-2:  ACPI 2.0 End Tag Usage 
• Table 3-3:  I/O Resource Flag (Resource Type = 1) Usage 
• Table 3-4:  Memory Resource Flag (Resource Type = 0) Usage 

Table 3-1. ACPI 2.0 QWORD Address Space Descriptor Usage 
Byte 
Offset 

Byte 
Length 

Data Description 

0x00 0x01 0x8A QWORD Address Space Descriptor 

0x01 0x02 0x2B Length of this descriptor in bytes, not including the first two fields. 

0x03 0x01  Resource type: 

    0:  Memory range 

    1:  I/O range 

    2:  Bus number range 

0x04 0x01  General flags. 

Flags that are common to all resource types: 
• Bits[7:4]:  Reserved (must be 0) 
• Bit[3]  _MAF: Always returned as 1 while returning allocated requests to 

indicate that the specified max address is fixed. 
• Bit[2]  _MIF: Always returned as 1 while returning allocated requests to 

indicate that the specified min address is fixed. 
• Bit[1]  _DEC: Ignored. 
• Bit[0]:  Ignored. 

continued 



  Code Definitions 

Version 0.9 August 2004 31 

Table 3-1. ACPI 2.0 QWORD Address Space Descriptor Usage (continued) 
Byte 
Offset 

Byte 
Length 

Data Description 

0x05 0x01  Type-specific flags. Ignored except as defined in Table 3-3 and Table 3-4 
below. 

0x06 0x08  Address Space Granularity. Used to differentiate between a 32-bit memory 
request and a 64-bit memory request. For a 32-bit memory request, this field 
should be set to 32. For a 64-bit memory request, this field should be set to 
64. Ignored for I/O and bus resource requests. Ignored during 
GetProposedResources().   

0x0E 0x08  Address Range Minimum. Set to the base of the allocated address range 
(bus, I/O, memory) during GetProposedResources().  Ignored 
during SubmitResources(). 

0x16 0x08  Address Range Maximum. Used to indicate alignment requirement during 
SubmitResources() and ignored during 
GetProposedResources(). This value must be 2n-1. The address 
base must be a multiple of the granularity field. That is, if this field is 4k-1, 
the allocated address must be a multiple of 4 KB. 
Note:  The interpretation of this field is different from the ACPI Specification 
and PCI Root Bridge I/O Protocol. 

0x1E 0x08  Address Translation Offset. Used to indicate the allocation status during 
GetProposedResources() and ignored during 
SubmitResources().  Allocation status is defined in "Related 
Definitions" in GetProposedResources(). 

Note:  The interpretation of this field is different from the ACPI Specification 
and PCI Root Bridge I/O Protocol. 

0x26 0x08  Address Range Length. This field specifies the amount of resources that are 
requested or allocated in number of bytes. 

 

Table 3-2. ACPI 2.0 End Tag Usage 
Byte 
Offset 

Byte 
Length 

   
Data 

   
Description 

0x00 0x01 0x79 End Tag. 

0x01 0x01 0x00 Checksum.  Set to 0 to indicate that checksum is to be ignored. 

 



PCI Host Bridge Resource Allocation Protocol Specification   

32 August 2004 Version 0.9 

Table 3-3. I/O Resource Flag (Resource Type = 1) Usage 
Bits Meaning 

Bits[7:1] Ignored.  

Bit[0] _RNG.  Ignored during an allocation request. Setting this bit while returning allocated 
resources means that the I/O allocation must be limited to the non-ISA I/O ranges. In that 
case, the PCI bus driver must allocate I/O addresses out of the non-ISA I/O ranges. The 
following are the non-ISA I/O ranges:  
• n100–n3FF 
• n500–n7FF 
• n900–nBFF 
• nD00–nFFF 

See ISA Aliasing Considerations for more details. 

 

Table 3-4. Memory Resource Flag (Resource Type = 0) Usage 
Bits Meaning 

Bits[7:3] Ignored.  

Bit[2:1] _MEM.  Memory attributes. 
Value and Meaning: 
      0        The memory is nonprefetchable. 
      1        Invalid. 
      2        Invalid. 
      3        The memory is prefetchable. 
Note:  The interpretation of these bits is somewhat different from the ACPI Specification. 
According to the ACPI Specification, a value of 0 implies noncacheable memory and the 
value of 3 indicates prefetchable and cacheable memory. 

Bit[0] Ignored. 

 



  Code Definitions 

Version 0.9 August 2004 33 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
NotifyPhase() 

Summary 
These are the notifications from the PCI bus driver that it is about to enter a certain phase of the 
PCI enumeration process.  

Prototype 
typedef 
EFI_STATUS 
(EFIAPI 
*EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_NOTIFY_PHASE) ( 
  IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL   *This, 
  IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE      Phase 
  ); 

Parameters 
This  

Pointer to the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.  

Phase  

The phase during enumeration. Type 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE is defined in 
"Related Definitions" below.  

Description 
This member function can be used to notify the host bridge driver to perform specific actions, 
including any chipset-specific initialization, so that the chipset is ready to enter the next phase. 
Eight notification points are defined at this time. See "Related Definitions" below for definitions of 
various notification points and Sample Implementation in the Design Discussion chapter for usage. 
More synchronization points may be added as required in the future. 



PCI Host Bridge Resource Allocation Protocol Specification   

34 August 2004 Version 0.9 

Related Definitions 
//******************************************************* 
// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE 
//******************************************************* 
typedef enum { 
  EfiPciHostBridgeBeginEnumeration, 
  EfiPciHostBridgeBeginBusAllocation, 
  EfiPciHostBridgeEndBusAllocation, 
  EfiPciHostBridgeBeginResourceAllocation, 
  EfiPciHostBridgeAllocateResources, 
  EfiPciHostBridgeSetResources, 
  EfiPciHostBridgeFreeResources, 
  EfiPciHostBridgeEndResourceAllocation 
} EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE; 

 
Following is a description of the fields in the above enumeration: 

 
EfiPciHostBridgeBeginEnumeration Resets the host bridge PCI apertures and internal data 

structures. The PCI enumerator should issue this notification 
before starting a fresh enumeration process. Enumeration cannot 
be restarted after sending any other notification such as 
EfiPciHostBridgeBeginBusAllocation. 

EfiPciHostBridgeBeginBusAllocation   The bus allocation phase is about to begin. No specific action is 
required here. This notification can be used to perform any 
chipset-specific programming. 

EfiPciHostBridgeEndBusAllocation The bus allocation and bus programming phase is complete. No 
specific action is required here. This notification can be used to 
perform any chipset-specific programming. 

EfiPciHostBridgeBeginResourceAllocation The resource allocation phase is about to begin. No specific 
action is required here. This notification can be used to perform 
any chipset-specific programming. 

continued 



  Code Definitions 

Version 0.9 August 2004 35 

  

EfiPciHostBridgeAllocateResources Allocates resources per previously submitted requests for all the PCI 
root bridges. These resource settings are returned on the next call to 
GetProposedResources(). Before calling 
NotifyPhase() with a Phase of 
EfiPciHostBridgeAllocateResource, the PCI bus 
enumerator is responsible for gathering I/O and memory requests for 
all the PCI root bridges and submitting these requests using 
SubmitResources(). This function pads the resource amount 
to suit the root bridge hardware, takes care of dependencies between 
the PCI root bridges, and calls the Global Coherency Domain (GCD) 
with the allocation request. In the case of padding, the allocated range 
could be bigger than what was requested.  

Note that the size of the allocated range could be smaller than what 
was requested. This scenario could happen due to an allocation failure, 
a host bridge hardware limitation, or any other reason. In that case, the 
call will return an EFI_OUT_OF_RESOURCES error. If the 
allocated windows are smaller than what was requested, the PCI bus 
enumerator may not be able to fit all the devices within the range. The 
PCI bus driver can call GetProposedResouces() to find out 
which of the resource types were partially allocated and the difference 
between the amount that was requested and the amount that was 
allocated. The PCI bus enumerator should readjust the requested sizes 
(by dropping certain PCI devices or PCI buses) to obtain a best fit. The 
PCI bus driver can call 
NotifyPhase (EfiPciHostBridgeFreeResources) 
to free up the original assignments and resubmit the adjusted resource 
requests with SubmitResources(). 

EfiPciHostBridgeSetResources Programs the host bridge hardware to decode previously allocated 
resources (proposed resources) for all the PCI root bridges. After the 
hardware is programmed, reassigning resources will not be supported. 
The bus settings are not affected. 

EfiPciHostBridgeFreeResources Deallocates resources that were previously allocated for all the PCI 
root bridges and resets the I/O and memory apertures to their initial 
state. The bus settings are not affected. If the request to allocate 
resources fails, the PCI enumerator can use this notification to 
deallocate previous resources, adjust the requests, and retry 
allocation. 

EfiPciHostBridgeEndResourceAllocation The resource allocation phase is completed. No specific action is 
required here. This notification can be used to perform any chipset-
specific programming.  

 



PCI Host Bridge Resource Allocation Protocol Specification   

36 August 2004 Version 0.9 

Status Codes Returned 
EFI_SUCCESS The notification was accepted without any errors. 

EFI_INVALID_PARAMETER The Phase is invalid. 

EFI_NOT_READY This phase cannot be entered at this time. For example, this error 
is valid for a Phase of 
EfiPciHostBridgeAllocateResources if 
SubmitResources() has not been called for one or more 
PCI root bridges before this call. 

EFI_DEVICE_ERROR Programming failed due to a hardware error. This error is valid 
for a Phase of EfiPciHostBridgeSetResources.  

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. 
This error is valid for a Phase of 
EfiPciHostBridgeAllocateResources if the 
previously submitted resource requests cannot be fulfilled or 
were only partially fulfilled.  

 



  Code Definitions 

Version 0.9 August 2004 37 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
GetNextRootBridge() 

Summary 
Returns the device handle of the next PCI root bridge that is associated with this host bridge. 

Prototype 
typedef 
EFI_STATUS 
(EFIAPI 
*EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_NEXT_ROOT_BRIDGE) ( 
  IN     EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL  *This, 
  IN OUT EFI_HANDLE                            *RootBridgeHandle 
  ); 

Parameters 
This 

Pointer to the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.   

RootBridgeHandle 

Returns the device handle of the next PCI root bridge. On input, it holds the 
RootBridgeHandle that was returned by the most recent call to 
GetNextRootBridge(). If RootBridgeHandle is NULL on input, the handle 
for the first PCI root bridge is returned. Type EFI_HANDLE is defined in 
InstallProtocolInterface() in the EFI 1.10 Specification. 

Description 
This function is called multiple times to retrieve the device handles of all the PCI root bridges that 
are associated with this PCI host bridge. Each PCI host bridge is associated with one or more PCI 
root bridges. On each call, the handle that was returned by the previous call is passed into the 
interface, and on output the interface returns the device handle of the next PCI root bridge. The 
caller can use the handle to obtain the instance of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL 
for that root bridge. When there are no more PCI root bridges to report, the interface returns 
EFI_NOT_FOUND.  A PCI enumerator must enumerate the PCI root bridges in the order that they 
are returned by this function. 
The search is initiated by passing in a NULL device handle as input. Some of the member functions 
of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL operate on a PCI 
root bridge and expect the RootBridgeHandle as an input. 
There is no requirement that this function return the root bridges in any specific relation with the 
EFI device paths of the root bridges. 
This function can also be used to determine the number of PCI root bridges that were produced by 
this PCI host bridge. The host bridge hardware may provide mechanisms to change the number of 



PCI Host Bridge Resource Allocation Protocol Specification   

38 August 2004 Version 0.9 

root bridges that it produces, but such changes must be completed before the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is installed. 

Status Codes Returned 
EFI_SUCCESS The requested attribute information was returned. 

EFI_INVALID_PARAMETER RootBridgeHandle is not an EFI_HANDLE that was 
returned on a previous call to GetNextRootBridge(). 

EFI_NOT_FOUND There are no more PCI root bridge device handles. 

 
  



  Code Definitions 

Version 0.9 August 2004 39 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
GetAllocAttributes() 

Summary 
Returns the allocation attributes of a PCI root bridge. 

Prototype 
typedef 
EFI_STATUS 
(EFIAPI * EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_GET_ATTRIBUTES) ( 
  IN  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL  *This, 
  IN  EFI_HANDLE                               RootBridgeHandle, 
  OUT UINT64                                   *Attributes 
  ); 

Parameters 
This 

Pointer to the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.  

RootBridgeHandle  

The device handle of the PCI root bridge in which the caller is interested. Type 
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10 
Specification. 

Attributes 

The pointer to attributes of the PCI root bridge. The permitted attribute values are 
defined in "Related Definitions" below.   

Description 
The function returns the allocation attributes of a specific PCI root bridge. The attributes can vary 
from one PCI root bridge to another. These attributes are different from the decode-related 
attributes that are returned by the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes() member function. The 
RootBridgeHandle parameter is used to specify the instance of the PCI root bridge. The device 
handles of all the root bridges that are associated with this host bridge must be obtained by calling 
GetNextRootBridge(). The attributes are static in the sense that they do not change during or 
after the enumeration process. The hardware may provide mechanisms to change the attributes on 
the fly, but such changes must be completed before 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is installed. The permitted 
values of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES are defined in 
"Related Definitions" below. The caller uses these attributes to combine multiple resource requests. 
For example, if the flag EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM is set, the PCI bus 
enumerator needs to include requests for the prefetchable memory in the nonprefetchable memory 
pool and not request any prefetchable memory. 



PCI Host Bridge Resource Allocation Protocol Specification   

40 August 2004 Version 0.9 

Related Definitions 
//******************************************************* 
// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES 
//******************************************************* 
 
#define EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM       1 
#define EFI_PCI_HOST_BRIDGE_MEM64_DECODE           2 

 
Following is a description of the fields in the above definition: 

 
EFI_PCI_HOST_BRIDGE_ 
COMBINE_MEM_PMEM 

If this bit is set, then the PCI root bridge does not support separate 
windows for nonprefetchable and prefetchable memory. A PCI bus 
driver needs to include requests for prefetchable memory in the 
nonprefetchable memory pool. 

EFI_PCI_HOST_BRIDGE_ 
MEM64_DECODE 

If this bit is set, then the PCI root bridge supports 64-bit memory 
windows.  If this bit is not set, the PCI bus driver needs to include 
requests for a 64-bit memory address in the corresponding 32-bit 
memory pool. 

Status Codes Returned 
EFI_SUCCESS The requested attribute information was returned. 

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle. 

EFI_INVALID_PARAMETER Attributes is NULL. 

 



  Code Definitions 

Version 0.9 August 2004 41 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
StartBusEnumeration() 

Summary 
Sets up the specified PCI root bridge for the bus enumeration process.  

Prototype 
typedef 
EFI_STATUS 
(EFIAPI *EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_START_BUS_ENUMERATION) ( 
  IN  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL  *This, 
  IN  EFI_HANDLE                                     RootBridgeHandle, 
  OUT VOID                                           **Configuration 
  ); 

Parameters 
This 

Pointer to the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.    

RootBridgeHandle 

The PCI root bridge to be set up. Type EFI_HANDLE is defined in 
InstallProtocolInterface() in the EFI 1.10 Specification. 

Configuration 

Pointer to the pointer to the PCI bus resource descriptor. 

Description 
This member function sets up the root bridge for bus enumeration and returns the PCI bus range 
over which the search should be performed in ACPI 2.0 resource descriptor format. The following 
table lists the fields in the ACPI 2.0 resource descriptor that are set for 
StartBusEnumeration(). 

Table 3-5. ACPI 2.0 Resource Descriptor Field Values for StartBusEnumeration() 
Field Setting 

Address Range Minimum Set to the lowest bus number to be scanned. 

Address Range Length Set to the number of PCI buses that may be scanned. The highest bus number is 
computed by adding the length to the lowest bus number and subtracting 1. 

Address Range Maximum Ignored. 

All other fields Ignored. 

Note:   Click the links in the table above or see Table 3-1 in the "Description" section of the PCI Host Bridge Resource 
Allocation Protocol definition for a description of these ACPI resource descriptor fields.   

This function cannot return resource descriptors for anything other than bus resources. This 
function can be used to prevent a PCI bus driver from scanning certain PCI buses to work around a 
chipset limitation. Because the size of ACPI resource descriptors is not fixed, 



PCI Host Bridge Resource Allocation Protocol Specification   

42 August 2004 Version 0.9 

StartBusEnumeration() is responsible for allocating memory for the buffer 
Configuration. 
The PCI segment is implicit and is identified by the SegmentNumber field in the instance of the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the PCI root bridge handle 
RootBridgeHandle. 

Status Codes Returned 
EFI_SUCCESS The PCI root bridge was set up and the bus range was returned 

in Configuration. 

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle. 

EFI_DEVICE_ERROR Programming failed due to a hardware error. 

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. 

 



  Code Definitions 

Version 0.9 August 2004 43 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
SetBusNumbers() 

Summary 
Programs the PCI root bridge hardware so that it decodes the specified PCI bus range.  

Prototype 
typedef 
EFI_STATUS 
(EFIAPI 
*EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SET_BUS_NUMBERS) ( 
  IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL  *This, 
  IN EFI_HANDLE                             RootBridgeHandle, 
  IN VOID                                   *Configuration 
  ); 

Parameters 
This 

Pointer to the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.    

RootBridgeHandle 

The PCI root bridge whose bus range is to be programmed. Type EFI_HANDLE is 
defined in InstallProtocolInterface() in the EFI 1.10 Specification. 

Configuration 

The pointer to the PCI bus resource descriptor.  

Description 
This member function programs the specified PCI root bridge to decode the bus range that is 
specified by the input parameter Configuration. 
The bus range information is specified in terms of the ACPI 2.0 resource descriptor format. The 
following table lists the fields in the ACPI 2.0 resource descriptor that are set for 
SetBusNumbers(). 

Table 3-6. ACPI 2.0 Resource Descriptor Field Values for SetBusNumbers() 
Field Setting 

Address Range Minimum Set to the lowest bus number to be decoded. 

Address Range Length Set to the number of PCI buses that should be decoded. The highest bus number 
is computed by adding the length to the lowest bus number and subtracting 1. 

Address Range Maximum Ignored. 

All other fields Ignored. 

Note:   Click the links in the table above or see Table 3-1 in the "Description" section of the PCI Host Bridge Resource 
Allocation Protocol definition for a description of these ACPI resource descriptor fields.   



PCI Host Bridge Resource Allocation Protocol Specification   

44 August 2004 Version 0.9 

This call will return EFI_INVALID_PARAMETER without programming the hardware if either of 
the following are specified: 
• Any descriptors other than bus type descriptors  
• Any invalid descriptors  
The bus range is typically a subset of what was returned during StartBusEnumeration(). If 
SetBusNumbers() is called with incorrect (but valid) parameters, it may cause system failure. 
The PCI segment is implicit and is identified by the SegmentNumber field in the instance of the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the PCI root bridge handle 
RootBridgeHandle. This call cannot alter the following: 
• The SegmentNumber field in the corresponding instances of the 

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  
• The segment number settings in the hardware 
The caller is responsible for allocating and deallocating a buffer to hold Configuration. If the 
call returns EFI_DEVICE_ERROR, the PCI bus enumerator can optionally attempt another bus 
setting. 

Status Codes Returned 
EFI_SUCCESS The bus range for the PCI root bridge was programmed. 

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle. 

EFI_INVALID_PARAMETER Configuration is NULL. 

EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI 2.0 resource 
descriptor. 

EFI_INVALID_PARAMETER Configuration does not include a valid ACPI 2.0 bus 
resource descriptor. 

EFI_INVALID_PARAMETER Configuration includes valid ACPI 2.0 resource 
descriptors other than bus descriptors. 

EFI_INVALID_PARAMETER Configuration contains one or more invalid ACPI 
resource descriptors. 

EFI_INVALID_PARAMETER "Address Range Minimum" is invalid for this root bridge. 

EFI_INVALID_PARAMETER "Address Range Length" is invalid for this root bridge. 

EFI_DEVICE_ERROR Programming failed due to a hardware error. 

 



  Code Definitions 

Version 0.9 August 2004 45 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
SubmitResources() 

Summary 
Submits the I/O and memory resource requirements for the specified PCI root bridge. 

Prototype 
typedef 
EFI_STATUS 
(EFIAPI * EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SUBMIT_RESOURCES) ( 
  IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL  *This, 
  IN EFI_HANDLE                              RootBridgeHandle, 
  IN VOID                                    *Configuration 
  ); 

Parameters 
This 

Pointer to the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.    

RootBridgeHandle 

The PCI root bridge whose I/O and memory resource requirements are being 
submitted. Type EFI_HANDLE is defined in InstallProtocolInterface() 
in the EFI 1.10 Specification. 

Configuration 

The pointer to the PCI I/O and PCI memory resource descriptor.  

Description 
This function is used to submit all the I/O and memory resources that are required by the specified 
PCI root bridge. The input parameter Configuration is used to specify the following: 
• The various types of resources that are required  
• The associated lengths in terms of ACPI 2.0 resource descriptor format 
The following table lists the fields in the ACPI 2.0 resource descriptor that are set for 
SubmitResources(). 



PCI Host Bridge Resource Allocation Protocol Specification   

46 August 2004 Version 0.9 

Table 3-7. ACPI 2.0 Resource Descriptor Field Values for SubmitResources() 
Field Setting 

Address Range Length Set to the size of the aperture that is requested. 

Address Space 
Granularity 

Used to differentiate between a 32-bit memory request and a 64-bit memory 
request. For a 32-bit memory request, this field should be set to 32. For a 64-bit 
memory request, this field should be set to 64. All other values result in this 
function returning the error code of EFI_INVALID_PARAMETER. 

Address Range Maximum Used to specify the alignment requirement. If "Address Range Maximum" is of the 
form 2n-1, this member function returns the error code 
EFI_INVALID_PARAMETER. The address base must be a multiple of the 
granularity field. That is, if this field is 4 KB-1, the allocated address must be a 
multiple of 4 KB. 

Address Range Minimum Ignored. 

Address Translation 
Offset 

Ignored. 

All other fields Ignored. 

Note:   Click the links in the table above or see Table 3-1 in the "Description" section of the PCI Host Bridge Resource 
Allocation Protocol definition for a description of these ACPI resource descriptor fields.   

The caller must ask for appropriate alignment using the "Address Range Maximum" field. The 
caller is responsible for allocating and deallocating a buffer to hold Configuration.  
It is considered an error if no resource requests are submitted for a PCI root bridge. If a PCI root 
bridge does not require any resources, a zero-length resource request must explicitly be submitted. 
If the Configuration includes one or more invalid resource descriptors, all the resource 
descriptors are ignored and the function returns EFI_INVALID_PARAMETER. 

Status Codes Returned 
EFI_SUCCESS The I/O and memory resource requests for a PCI root bridge 

were accepted. 

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle. 

EFI_INVALID_PARAMETER Configuration is NULL. 

EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI 2.0 resource 
descriptor. 

EFI_INVALID_PARAMETER Configuration includes requests for one or more resource 
types that are not supported by this PCI root bridge. This error 
will happen if the caller did not combine resources according to 
Attributes that were returned by 
GetAllocAttributes(). 

EFI_INVALID_PARAMETER "Address Range Maximum" is invalid. 

EFI_INVALID_PARAMETER "Address Range Length" is invalid for this PCI root bridge. 

EFI_INVALID_PARAMETER "Address Space Granularity" is invalid for this PCI root bridge. 

 



  Code Definitions 

Version 0.9 August 2004 47 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
GetProposedResources() 

Summary 
Returns the proposed resource settings for the specified PCI root bridge.  

Prototype 
typedef 
EFI_STATUS 
(EFIAPI * EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_PROPOSED_RESOURCES) ( 
  IN  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL  *This, 
  IN  EFI_HANDLE                                 RootBridgeHandle, 
  OUT VOID                                       **Configuration 
  ); 

Parameters 
This 

Pointer to the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.   

RootBridgeHandle 

The PCI root bridge handle. Type EFI_HANDLE is defined in 
InstallProtocolInterface() in the EFI 1.10 Specification. 

Configuration 

The pointer to the pointer to the PCI I/O and memory resource descriptor. 

Description 
This member function returns the proposed resource settings for the specified PCI root bridge. The 
proposed resource settings are prepared when NotifyPhase() is called with a Phase of 
EfiPciHostBridgeAllocateResources. The output parameter Configuration 
specifies the following: 
• The various types of resources, excluding bus resources, that are allocated  
• The associated lengths in terms of ACPI 2.0 resource descriptor format 
The following table lists the fields in the ACPI 2.0 resource descriptor that are set for 
GetProposedResources(). 



PCI Host Bridge Resource Allocation Protocol Specification   

48 August 2004 Version 0.9 

Table 3-8. ACPI 2.0 Resource Descriptor Field Values for GetProposedResources() 
Field Setting 

Address Range Length Set to the size of the aperture that is requested. 

Address Space 
Granularity 

Ignored. 

Address Range Minimum Indicates the starting address of the allocated ranges. 

Address Translation 
Offset 

Indicates the allocation status. Allocation status is defined in "Related Definitions" 
below. 

Address Range Maximum Ignored. 

All other fields Ignored. 

Note:   Click the links in the table above or see Table 3-1 in the "Description" section of the PCI Host Bridge Resource 
Allocation Protocol definition for a description of these ACPI resource descriptor fields.   

The callee is responsible for allocating a buffer to hold Configuration because the caller does 
not know the number of descriptors that are required. The caller is also responsible for deallocating 
the buffer. 
If NotifyPhase() is called with a Phase of EfiPciHostBridgeAllocateResources 
and returns EFI_OUT_OF_RESOURCES, the PCI bus enumerator may use 
GetProposedResources() to retrieve the proposed settings. The 
EFI_OUT_OF_RESOURCES error status indicates that one or more requests could not be fulfilled 
or were partially fulfilled. Additional details of the allocation status for each type of resource can be 
retrieved from the "Address Translation Offset" field in the resource descriptor that was returned by 
this function; also see "Related Definitions" below for defined allocation status values. This error 
could happen for the following reasons: 
• Allocation failure 
• A limitation in the host bridge hardware  
• Any other reason  
If the allocated windows are smaller than what was requested, the PCI bus enumerator may not be 
able to fit all the devices within the range. In that case, the PCI bus enumerator may choose to 
readjust the requested sizes (by dropping certain devices or PCI buses) to obtain a best fit. The PCI 
bus driver calls NotifyPhase() with a Phase of EfiPciHostBridgeFreeResources to 
free the original assignments. 
If this member function is able to only partially fulfill the requests for one or more resource types, 
the root bridges that are first in the list will get resources first. The ordering of the root bridges is 
determined by the output of GetNextRootBridge(). The handle to the first root bridge is 
obtained by calling GetNextRootBridge() with an input handle of NULL. 
In the case of I/O resources, the PCI bus enumerator must check the _RNG flag. If this flag is set, 
the I/O ranges that are allocated to the devices must come from the non-ISA I/O subset.  



  Code Definitions 

Version 0.9 August 2004 49 

For example, if this flag is set, the "Address Range Minimum" is 0x1000, and the "Address Range 
Length" is 0x1000, then the following I/O ranges can be allocated to PCI devices: 
• 0x1000–0x10FF 
• 0x1400–0x14FF 
• 0x1800–0x18FF 
• 0x1C00–0x1CFF 
This call is made before NotifyPhase() is called with a Phase of 
EfiPciHostBridgeSetResources. After that time, the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function should be 
used to obtain the resources that were consumed by a particular PCI root bridge.  

Related Definitions 
//*************************************************************** 
// EFI_RESOURCE_ALLOCATION_STATUS 
//*************************************************************** 
typedef  UINT64    EFI_RESOURCE_ALLOCATION_STATUS; 
 
#define EFI_RESOURCE_SATISFIED                    0 
#define EFI_RESOURCE_NOT_SATISFIED                (UINT64) -1 

 
Following is a description of the fields in the above definition. All other values indicate that the 
request of this resource type could be partially fulfilled. The exact value indicates how much more 
space is still required to fulfill the requirement. 

 
EFI_RESOURCE_SATISFIED The request of this resource type could be fulfilled. 

EFI_RESOURCE_NOT_SATISFIED The request of this resource type could not be fulfilled for its 
absence in the host bridge resource pool. 

Status Codes Returned 
EFI_SUCCESS The requested parameters were returned. 

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle. 

EFI_DEVICE_ERROR Programming failed due to a hardware error. 

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. 

 



PCI Host Bridge Resource Allocation Protocol Specification   

50 August 2004 Version 0.9 

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. 
PreprocessController() 

Summary 
Provides the hooks from the PCI bus driver to every PCI controller (device/function) at various 
stages of the PCI enumeration process that allow the host bridge driver to preinitialize individual 
PCI controllers before enumeration.  

Prototype 
typedef 
EFI_STATUS 
(EFIAPI * EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_PREPROCESS_CONTROLLER)( 
  IN  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This, 
  IN  EFI_HANDLE                                       RootBridgeHandle, 
  IN  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS      PciAddress, 
  IN  EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE     Phase 
  ); 

Parameters 
This 

Pointer to the 
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.   

RootBridgeHandle 

The associated PCI root bridge handle. Type EFI_HANDLE is defined in 
InstallProtocolInterface() in the EFI 1.10 Specification. 

PciAddress 

The address of the PCI device on the PCI bus. This address can be passed to the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL member functions to access the PCI 
configuration space of the device. See Table 12-1 in the EFI 1.10 Specification for 
the definition of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS. 

Phase 

The phase of the PCI device enumeration. Type 
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE is defined in 
"Related Definitions" below. 

Description 
This function is called during the PCI enumeration process. No specific action is expected from this 
member function. It allows the host bridge driver to preinitialize individual PCI controllers before 
enumeration.  
The parameter RootBridgeHandle can be used to locate the instance of the 
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the root bridge that is the parent 
of the specific PCI function. The parameter PciAddress can be passed to the Pci.Read() and 



  Code Definitions 

Version 0.9 August 2004 51 

Pci.Write() functions of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance to access 
the PCI configuration space of the specific PCI function.  
This member function is invoked during PCI enumeration and before the PCI enumerator has 
created a handle for the PCI function. As a result, the EFI_PCI_IO_PROTOCOL cannot be used 
at this point. 
Two notification points are defined at this time. See type 
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE in "Related Definitions" below 
for definitions of these notification points and ISA Aliasing Considerations for usage. More 
synchronization points may be added as required in the future. 

Related Definitions 
//******************************************************* 
// EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE 
//******************************************************* 
typedef enum { 
  EfiPciBeforeChildBusEnumeration,  
  EfiPciBeforeResourceCollection 
} EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE; 

 
Following is a description of the fields in the above enumeration: 

 
EfiPciBeforeChildBusEnumeration This notification is applicable only to PCI-to-PCI bridges and 

indicates that the PCI enumerator is about to begin enumerating the 
bus behind the PCI-to-PCI bridge. This notification is sent after the 
primary bus number, the secondary bus number, and the 
subordinate bus number registers in the PCI-to-PCI bridge are 
programmed to valid (but not necessary final) values. Programming 
of the bus number register allows the chipset code to scan devices 
on the bus that are immediately behind the PCI-to-PCI bridge. This 
notification can be used to reset the secondary PCI bus. Some PCI-
to-PCI bridges can drive their secondary bus at various clock 
speeds (33 MHz or 66 MHz, for example) and support PCI-X* or 
conventional PCI mode. These bridges must be set up to operate at 
the correct speed and correct mode before the downstream devices 
and buses are enumerated. This notification can be used to perform 
that activity. The host bridge code cannot reprogram the bus 
numbers in the PCI-to-PCI bridge or reprogram any upstream 
devices during this notification. It can touch the downstream devices 
because the PCI enumerator has not found these devices. If there 
are multiple PCI-to-PCI bridges on the same PCI bus, the order in 
which the notification is sent to these bridges is implementation 
specific. On the other hand, it is guaranteed that a PCI-to-PCI 
bridge will see this notification before the downstream bridge 
receives this notification or its child devices receive the 
EfiPciBeforeResourceCollection notification. 

continued 



PCI Host Bridge Resource Allocation Protocol Specification   

52 August 2004 Version 0.9 

  

EfiPciBeforeResourceCollection This notification is sent before the PCI enumerator probes the Base 
Address Register (BAR) registers for every valid PCI function. This 
notification can be used to program the backside registers that 
determine the BAR size or any other programming such as the 
master latency timer, cache line size, and PERR and SERR control. 
This notification is sent regardless of whether the function 
implements BAR or not. In the case of a multifunction device, this 
notification is sent for every function of the device. The order within 
the functions is not specified. The order in which this notification is 
sent to various devices/functions on the same bus is 
implementation specific. 

Status Codes Returned 
EFI_SUCCESS The requested parameters were returned. 

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.  

EFI_INVALID_PARAMETER Phase is not a valid phase that is defined in 
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE. 

EFI_DEVICE_ERROR Programming failed due to a hardware error. The PCI enumerator should 
not enumerate this device, including its child devices if it is a PCI-to-PCI 
bridge. 

 
 


	1 Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions


	2 Design Discussion
	Introduction
	PCI Terms Used in This Document
	PCI Host Bridge Resource Allocation Protocol
	PCI Host Bridge Resource Allocation Protocol Overview 
	Host Bus Controllers
	Producing the PCI Host Bridge Resource Allocation Protocol
	Required PCI Protocols
	Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

	Sample PCI Architectures
	Sample PCI Architectures Overview
	Desktop System with 1 PCI Root Bridge
	Server System with 4 PCI Root Bridges
	Server System with 2 PCI Segments
	Server System with 2 PCI Host Buses

	ISA Aliasing Considerations
	Programming of Standard PCI Configuration Registers
	Sample Implementation

	3 Code Definitions
	Introduction
	PCI Host Bridge Resource Allocation Protocol
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPhase()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetNextRootBridge()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAttributes()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusEnumeration()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitResources()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetProposedResources()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.PreprocessController()



