

2

Last time

Managed to get seemingly good results with basic network

98% Test Accuracy on MNIST:

▪ ReLU

▪ 3 hidden layers of depth 1200

▪ 15 epochs

98% for a minimal amount of training time seems pretty good!

What are we missing?

3

Considerations

MNIST has relatively clean images

Numbers are:

▪ Centered

▪ Approximately same size

Image only has number in it - background is black

4

Problem 1: Translation invariance

Each pixel is independent input

If we translate the input, the model breaks down

▪ We need to train (and test) models on translated data for more realistic scenario

5

Problem 2: Huge number of parameters

1200x1200 matrix of weights = 1.4 million weights

▪ More weights need more data

▪ More weights hard to scale on hardware

– Memory constraints!

What can we do?

Kernels

7

What are kernels?

Square grid of weights overlaid on image, centered on one pixel, and moved
around the image

Each weight multiplied with pixel underneath it

Output for the centered pixel is σ𝑝=1
𝑃 𝑊𝑝 ⋅ 𝑝𝑖𝑥𝑒𝑙𝑝

Used for traditional image processing techniques:

▪ Blur

▪ Sharpen

▪ Edge detection

▪ Emboss

8

Example: 3x3

Input OutputKernel

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

9

Imagine kernel is stacked on top of input

Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

10

Example: 3x3

Input OutputKernel

= 3 ⋅ −1

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

11

Example: 3x3

Input OutputKernel

= 3 ⋅ −1 + 2 ⋅ 0

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

12

Example: 3x3

Input OutputKernel

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

13

Example: 3x3

Input OutputKernel

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1 + 1 ⋅ −2

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

2

14

Example: 3x3

Input OutputKernel

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1 + 1 ⋅ −2 + 2 ⋅ 0 + 3 ⋅ 2 + 1 ⋅ −1
+ 1 ⋅ 0 + 1 ⋅ 1

= −3 + 1 − 2 + 6 − 1 + 1
= 2

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

-2

15

Here’s what the process looks like over a larger input

OutputKernel

1 2 0 3 1

1 0 0 2 2

2 1 2 1 1

0 0 1 0 0

1 2 1 1 1

-1 1 2

1 1 0

-1 -2 0

Input

16

Interactive Kernel Demonstration

http://setosa.io/ev/image-kernels/

http://setosa.io/ev/image-kernels/

Convolutional Neural Networks

18

Convolutional Neural Networks

Idea: let neural network learn suitable kernels for task

19

Convolution operation

Convolution settings

21

Height and width

Number of pixels the kernel operates on

Both dimensions must be odd

▪ B/c we need a reasonable center pixel

Kernel doesn’t have to be square

Height: 3, Width: 3 Height: 3, Width: 1Height: 1, Width: 3

22

Stride

Stride is the step size from center to center

Also has height/width component

▪ Generally height/width are the same

If greater than 1, will scale down the output dimensions

1 2 0 3 1

1 0 0 2 2

2 1 2 1 1

0 0 1 0 0

1 2 1 1 1

-2

23

Stride 2 convolution

Input

Output

Kernel

-1 1 2

1 1 0

-1 -2 0

1 2 0 3 1

1 0 0 2 2

2 1 2 1 1

0 0 1 0 0

1 2 1 1 1

24

Padding

Notice: the standard convolution down samples input

Input

OutputKernel

-1 1 2

1 1 0

-1 -2 0

[5x5]

[3x3]

-2

25

Padding

Padding adds pseudo-pixels off-the-edge of the input

▪ Padding is all zero values

One unit of padding means one ring of zero pixels around the input

Amount of padding is usually either:

▪ No padding

– TensorFlow calls this ‘VALID’ (i.e., use only valid input size)

▪ Enough to offset the kernel size and output the
same dimensions

– TensorFlow calls this ‘SAME’
(i.e., same input/output size)

3x3 kernel padding 1
5x5 kernel padding 2
7x7 kernel padding 3

-1

26

Padding: 1 (‘SAME’)

Output

Kernel

-1 1 2

1 1 0

-1 -2 0

0 0 0 0 0 0 0

0 1 2 0 3 1 0

0 1 0 0 2 2 0

0 2 1 2 1 1 0

0 0 0 1 0 0 0

0 1 2 1 1 1 0

0 0 0 0 0 0 0

Input

27

Depth—Number of Output Channels

Channels: multiple numbers (colors) associated with same pixel

▪ 3-color RGB 3 channels

▪ 4-color CMYK 4 channels

Number of separate kernels needed in a layer

1 2 0 3 1

1 0 0 2 2

2 1 2 1 1

0 0 1 0 0

1 2 1 1 1

28

Output channels: 2

Input

kernel 1

-1 1 2

1 1 0

-1 -2 0

kernel 2

0 1 -1

0 1 1

1 0 -2

output (layer1)

-2

output (layer2)

29

Input Depth

Each kernel has the same depth as the number of input channels

Each input on each channel has a single weight associated with it

30

Convolution In TensorFlow

tf.nn.conv2d(input, filter, strides, padding)

input: 4d tensor [batch_size, height, width, channels]

filter: 4d: [height, width, channels_in, channels_out]

▪ Generally a Variable

strides: 4d: [1, vert_stride, horiz_strid, 1]

▪ First and last dimensions must be 1 (helps with under-the-hood math)

padding: string: ‘SAME’ or ‘VALID’

pooling

32

pooling

Idea: reduce neighboring pixels

Reduce dimensions of inputs (height and width)

No parameters!

8 5

1 4

33

Max pooling

maxpool

2 1 0 -1

-3 8 2 5

1 -1 3 4

0 1 1 -2

2 1.5

.25 1.5

34

Average pooling

avgpool

2 1 0 -1

-3 8 2 5

1 -1 3 4

0 1 1 -2

35

Global pooling

global pool

2 1 0 -1

-3 8 2 5

1 -1 3 4

0 1 1 -2

(Average
pool over
whole layer)

1.3125

36

Additional convolution operation resource

Andrej Karpathy’s convolutional network website

Created for Stanford’s CS231n course

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

LeNet-5

38

LeNet

Created by Yann LeCun in the 1990s

Used on the MNIST dataset

Idea: Use convolutions to efficiently learn features on image data

39

Network diagram

40

Network diagram

Input: 28x28, with 2 pixels
of padding (on all sides)

41

Network diagram

Convolution size: 5x5
(not labeled, but in paper)

42

Network diagram

First convolutional
layer depth: 6

43

Network diagram

Pooling: 2x2, stride 2

Note: in the paper, the model uses a more complex parameter based pooling operation.

Max/average pooling turns out to work better in practice

44

Network diagram

Convolution
size: 5x5

45

Network diagram
Second convolutional
layer depth: 16

46

Network diagram
Pooling: 2x2,
stride 2

47

Network diagram
Flatten from
5x5x16 to 400x1

48

Network diagram
Fully connected layer:
from 400 to 120

49

Network diagram
Fully connected layer:
from 120 to 84

50

Network diagram
Fully connected layer:
from 84 to 10

51

Network diagram

Softmax

52

Table description of LeNet-5

Layer Name Parameters

1. Convolution 5x5, stride 1, padding 2 (‘SAME’)

2. Max Pool 2x2, stride 2

3. Convolution 5x5, stride 1, padding 2 (‘SAME’)

4. Max Pool 2x2, stride 2

5. Fully connected (ReLU) Depth: 120

6. Fully connected (ReLU) Depth: 84

7. Output (fully connected ReLU) Depth: 10

53

Count parameters

Conv1: 1*6*5*5 + 6 = 156

Pool2: 0

Conv3: 6*16*5*5 + 16 = 2416

Pool4: 0

FC1: 400*120 + 120 = 48120

FC2: 120*84 + 84 = 10164

FC3: 84*10 + 10 = 850

Total: = 61706

Less than a single FC layer with [1200x1200] weights!

Xavier (and He) Initialization

55

Xavier Initialization

Want to initialize our weights such that the variance of the output of our
activation is 1

Xavier Glorot and Bengio derived the following initialization scheme for
activations with mean zero inputs:

𝑊 = 𝑇𝑟𝑢𝑛𝑐𝑁𝑜𝑟𝑚𝑎𝑙(0.0,
2

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
)

56

Recommendation for ReLUs

He et al. derived an initialization scheme specifically for ReLUs (which don’t
have a zero mean)

𝑊 = 𝑇𝑟𝑢𝑛𝑐𝑁𝑜𝑟𝑚(0.0,
2

𝑛𝑖𝑛
)

57

Simplifies the training procedure.

Allows us to train “end-to-end”, without pre-training

Less time spent dealing with exploding gradients

No longer have to hand-tweak everything

