High Performance 32nm Logic Technology
Featuring 2nd Generation High-k + Metal Gate Transistors

Logic Technology Development, * Quality and Reliability Engineering, ** TCAD

Intel Corporation
Outline

• Scaling Trends
• 32nm Technology Features
• Device Performance
• Variation and Vccmin
• Summary
Key Messages

• 32nm technology continues historic scaling trends
 – Reduced pitch and increased performance

• Record NMOS and PMOS drive currents
 – NMOS I_{dsat} of 1.62mA/um @100nA/um I_{off}, 1.0V
 – PMOS I_{dsat} of 1.37mA/um @100nA/um I_{off}, 1.0V

• Highest reported SRAM array density for any 32nm or 28nm technology
Outline

- **Scaling Trends**
- 32nm Technology Features
- Device Performance
- Variation and Vccmin
- Summary
Pitch Scaling Trend

- Pitch scaling trend is continued to the 32nm technology node.

Tightest reported gate pitch for any 32nm or 28nm node
Pitch Scaling Issues

- Reduced contact area increases resistance
- Reduced area for strain enhancement
- Reduced gate length increases V_t
- Increased fringe capacitance

Novel techniques needed to scale pitch and improve performance
Traditional Scaling

\[I_d = \mu \frac{C_{ox}}{L_e}(V_g - V_t)^\alpha \]

- Junction scaling is slowing due to resistance increases
- Gate length scaling through increased Vt degrades performance
- Traditional scaling is losing steam – new paradigm needed
Gate Length and Drive Current

- Longer gate lengths can improve drive current for the same Ioff due to the lower Vt
- However, density and capacitance benefits at the shorter gate lengths are still preferred
Mobility Scaling

\[I_d = \mu \frac{C_{ox}}{L_e (V_g - V_t)^\alpha} \]

- Increasing mobility increases device performance with minimal impact to leakage – effective scaling strategy
- Reducing scattering mechanisms, applying stress and surface orientation all affect mobility

(001) surface
1GPa uniaxial stress [110]
1 MV/cm vertical field
30meV energy contours

M.Giles, AVS 2006
Stress Methods

Capping Layers

Gate Induced

Epitaxial Layers

Contacts

C. Auth, VLSI 2008
PMOS drive strength has been increasing more rapidly than NMOS primarily due to mobility improvements from stress.

Hole mobility shows a greater sensitivity to stress for (100):
- Valence band degeneracy
- Band energy splitting
- Band warping

Affects device sizing in circuits:
- Balances inverter circuits
- Reduces PMOS area

Improves performance and power.
Idlin versus Idsat

- As an inverter switches, the transistor bias changes mapping out a current trajectory.
- For typical capacitive loads, the majority of charging occurs at lower Vds values.
- Based on these trajectories, Idsat may not be a good figure of merit for performance.
- Idlin and Idsat are equally important for circuit performance.
Outline

• Scaling Trends
• **32nm Technology Features**
• Device Performance
• Variation and Vccmin
• Summary
32nm Design Rules

<table>
<thead>
<tr>
<th>Layer</th>
<th>Pitch (nm)</th>
<th>Thick (nm)</th>
<th>Aspect Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation</td>
<td>140</td>
<td>200</td>
<td>--</td>
</tr>
<tr>
<td>Contacted Gate</td>
<td>112.5</td>
<td>35</td>
<td>--</td>
</tr>
<tr>
<td>Metal 1</td>
<td>112.5</td>
<td>95</td>
<td>1.7</td>
</tr>
<tr>
<td>Metal 2</td>
<td>112.5</td>
<td>95</td>
<td>1.7</td>
</tr>
<tr>
<td>Metal 3</td>
<td>112.5</td>
<td>95</td>
<td>1.7</td>
</tr>
<tr>
<td>Metal 4</td>
<td>168.8</td>
<td>151</td>
<td>1.8</td>
</tr>
<tr>
<td>Metal 5</td>
<td>225.0</td>
<td>204</td>
<td>1.8</td>
</tr>
<tr>
<td>Metal 6</td>
<td>337.6</td>
<td>303</td>
<td>1.8</td>
</tr>
<tr>
<td>Metal 7</td>
<td>450.1</td>
<td>388</td>
<td>1.7</td>
</tr>
<tr>
<td>Metal 8</td>
<td>566.5</td>
<td>504</td>
<td>1.8</td>
</tr>
<tr>
<td>Metal 9</td>
<td>19.4um</td>
<td>8um</td>
<td>1.5</td>
</tr>
</tbody>
</table>

~0.7x scaling from 45nm technology
Interconnects

- 9 metal layers
- Metal 1-3 pitches match transistor pitch
- Graduated upper level pitches optimized for density and performance
- Extensive use of low-k ILD and SiCN materials
Thick Top Metal Layer

Thick top metal for power delivery and I/O routing
Key Device Features

- 30nm gate length with 112.5nm contacted gate pitch
- 2nd generation high-k metal gate
 - 0.9nm EOT
 - Replacement metal gate approach
 - Enables stress enhancement techniques
 - Replacement high-k approach
 - Improved performance
- 4th generation SiGe strained silicon PMOS device
 - Increased Ge concentration
 - Closer proximity to channel for enhanced mobility
- Raised NMOS S/D region
 - Improved external resistance
- 2nd generation trench contacts
 - Reduced contact resistance
 - Used as local interconnects
Replacement Metal Gate Benefits

- High Thermal budget available for Midsection
 - Better Activation of S/D Implants
- Low thermal budget for Metal Gate
 - Large range of gate materials available
- **Significant enhancement of strain**
 - Both NMOS and PMOS benefits
Device Cross Sections

NMOS

PMOS
Device Cross Sections

- NMOS
- PMOS

- 30nm gate length devices
- 112.5nm contacted gate pitch
Device Cross Sections

- 2nd generation high-k dual work function metal gate
- Replacement metal gate and high-k flow for improved performance
Device Cross Sections

- 4th generation strained SiGe PMOS epi layer
- Increased Ge content and closer proximity to channel for higher strain
Device Cross Sections

- Raised NMOS S/D region for improved R_{ext}
Device Cross Sections

- Dual trench contacts with tungsten lower layer and copper upper layer
- Trench contacts for improved resistance and local interconnects
PMOS Mobility Scaling

Increasing Ge Concentration

Closer Proximity

RMG Strain Enhancement

- Increasing Ge concentration and closer SiGe proximity improves drive
- Strain enhancement possible only in the RMG flow also improves drive
Stress and Mobility Enhancement

Innovations enable performance and pitch scaling
Outline

• Scaling Trends
• 32nm Technology Features
• **Device Performance**
• Variation and Vccmin
• Summary
NMOS Performance

- 1.62mA/um I_{dsat} and 0.231mA/um I_{idlin} @ 100nA I_{loff}
- 19% and 20% gain over 45nm

45nm: Mistry 2007 IEDM

$I_{loff} (nA/um)$ vs $I_{dsat} (mA/um)$

$V_{gs}=1.0V$

$V_{ds}=1.0V$

$I_{loff} (nA/um)$ vs $I_{idlin} (mA/um)$

$V_{gs}=1.0V$

$V_{ds}=0.05V$
PMOS Performance

- 1.37mA/um Idsat and 0.240mA/um Idlin @ 100nA Ioff
- 28% and 35% gain over 45nm
IV Characteristics

- PMOS drive currents are approaching NMOS values
- Subthreshold slopes are well maintained at ~100mV/decade
Pitch and Performance Scaling

• Simultaneous performance and density improvement

Highest reported drive currents at tightest reported gate pitch of any 32nm or 28nm technology
Outline

• Scaling Trends
• 32nm Technology Features
• Device Performance
• Variation and Vccmin
• Summary
• 32nm technology continues the 0.7x reduction in CD variation
• No increase in systematic and random variation is seen
SRAM Scaling Trend

Transistor density doubles every two years

Source: Intel

250nm, 180nm, 130nm, 90nm, 65nm, 45nm, 32nm

Technology

SRAM Cell Area (um²)

0.5x every two years

65 nm, 0.570 um²
45 nm, 0.346 um²
32 nm, 0.171 um²
Array Density Scaling

Array density includes cells, sense amps and control circuitry.

4.2Mbit/mm² array density is the highest reported for any 32nm or 28nm technology.
As expected, larger SRAM cell sizes support lower Vccmin.

Vccmin depends on the distribution percentage reported.
As expected, larger SRAM cell sizes support lower Vccmin. Vccmin depends on the distribution percentage reported.
- V_{ccmin} increases for larger array sizes due to the statistics from the larger number of cells.
Cell Array Size and Vccmin

- Vccmin increases for larger array sizes due to the statistics from the larger number of cells.
Cell size, array size, distribution and frequency must all be included when reporting Vccmin.
Outline

• Scaling Trends
• 32nm Technology Features
• Device Performance
• Variation and Vccmin

Summary
Intel’s 32 nm process has achieved the high yields needed for volume production
32 nm CPU products are presently being produced and shipped from two factories
32 nm Westmere Microprocessor

Dual core Westmere
Industry’s first 32 nm processor
First in a family of 32 nm microprocessors based upon the Intel® microarchitecture codenamed Nehalem
Summary

• 32nm technology continues historic scaling trends
 – Reduced pitch and increased performance

• Record NMOS and PMOS drive currents
 – NMOS Idsat of 1.62mA/um @100nA/um Ioff, 1.0V
 – PMOS Idsat of 1.37mA/um @100nA/um Ioff, 1.0V

• Highest reported SRAM array density and tightest reported gate pitch for any 32nm or 28nm technology

• This 32nm technology is in high volume manufacturing of multi-core CPU products in multiple fabs
Acknowledgements

- The authors gratefully acknowledge the many people in the following organizations at Intel who contributed to this work:
 - Logic Technology Development
 - Quality and Reliability Engineering
 - Technology CAD
 - Components Research
 - Assembly & Test Technology Development
For further information on Intel's silicon technology, please visit our Technology & Research page at www.intel.com/technology