
Executive Summary
Intel AI Lab, MILA, and CrowdAI have conducted a joint data-science collaboration 
to develop deep-learning image-segmentation models that can be utilized to 
detect bridges in remote areas using satellite imagery. Working with the American 
Red Cross, we identified that it would be valuable to base this work on imagery of 
territory in Uganda, given the country’s historical suffering from both community 
epidemics and seasonal weather events.

In order to develop models for this region, we created a custom training dataset 
with CrowdAI, utilizing four band (RGB plus near-infrared) high-resolution satellite 
imagery as our inputs. We trained multiple deep-learning models to segment 
images into road, waterway, bridge, and background classes.

Utilizing a custom evaluation method that is appropriate for the sparse bridge 
detection problem, we selected a top-performing model with which to run 
inference and identify bridges across locations in Southern Uganda previously 
unseen to the model. Through our pipeline, we were able to identify 70 new bridges.

Problem Statement
Preparing and responding to humanitarian disasters requires accurate and timely 
mapping of affected regions. Current approaches satisfy the goals of mapping 
affected regions in a short amount of time, but they also require resource-intensive 
manual labeling from teams of human volunteers, such as the Humanitarian 
OpenStreetMap Team (HOT).

The Red Cross has played a major role responding to past outbreaks of diseases 
including Ebola in Africa. Based on their experience, the Red Cross identified 
an important learning opportunity in Uganda to support community epidemic 
and disaster planning work, with the intention to accelerate remote mappers by 
assisting them using machine learning.

The described need is to geolocate areas of potential bridges in Uganda so that 
mappers can plot them, and then for the Ugandan National Society to use the data 
to facilitate planning of evacuation and aid-delivery routes to avoid delays during 
major disasters. To facilitate this work, Intel, MILA, and CrowdAI created a training 
dataset across Northern Uganda and used this data to develop deep-learning-
based models to automate bridge identification.
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Data Science & Analysis
To train models for bridge detection in Uganda, we created a 
new training dataset, in conjunction with CrowdAI, featuring 
bridge, waterway, and roadway vector annotations for 339 
unique bridge locations in Northern Uganda, visualized 
in Figure 1. In order to capture variance across time and 
sensors, the training dataset contains multiple views of the 
same bridges to enable the models to learn invariance to 
seasonal and nadir-angle changes.

Training Dataset Creation
To create high quality training data for machine learning 
models, CrowdAI uses its custom-built annotation interface. 
The annotation process takes place across three steps:

•  Phase I (Initial Annotation). A trained annotator uses 
CrowdAI’s web-based tool to label an image or video for 
the target features. These may require a mix of polygons, 
polylines, or boxes, depending on the feature and desired 
training data type. CrowdAI will sometimes “pre-annotate” 
an image by having a machine-learning model predict on 
that image, creating a “first pass” mask that annotators need 
only edit and correct to ground truth.

•  Phase II (Review). A second trained annotator will review 
the results of the Phase I annotation to check for accuracy 
and conformity to ontology for the task.

•  Phase III (Final Review). The last review is performed 
by CrowdAI’s highly-trained workforce of distributed 
Final Reviewers. These geospatial experts use CrowdAI’s 
annotation interface to perform final checks for label 
accuracy, consistency, and conformity to ontology for that 
particular feature.

CrowdAI’s internal data operations team then performs 
final spot checks on the data before moving the dataset to 
production for model development.

For this project, we utilized the OSM labeling nomenclature 
to determine what was labeled as a particular class. In 
particular, through discussions with the American Red Cross, 
the team determined to use the labeling schema shown in 
Table 1 to follow OSM conventions.

For roadways, the cut-off was “highway=tertiary,” which is 
defined by the OSM-Africa Wiki as follows:

      “Major transportation routes connecting towns and larger 
villages. Collector function in urban areas.

      Passable by vehicles with 4 or more wheels, motorcycles, 
bicycles, or foot and animal traffic.

      Indicative info only - can vary. Width: 3 to 7 meters; may 
be paved.”

Thus, we did not label footpaths or agrarian walkways; these 
road types are common in rural areas, but they are relatively 
small and not part of the primary road network, which is the 
higher priority for route planning in the context of emergency 
response.

Training Dataset Characterization
In order to prepare the dataset for training, we bin images 
by spatial location, so that all images of the same location 
are grouped together in either the training or validation sets. 
We consider an epoch to be a single pass across all spatial 
locations, where for each spatial location, we randomly 
sample one image out of the stack available at each location. 
Figure 2 shows these different views of a single bridge.

Figure 2 . Multiple views of a single bridge.

Table 1 . OSM-compliant labeling schema.

Class Label OSM Tags Used as  
Labeling Guidelines

Bridges “bridge=yes”

Roads
“highway = primary”, 

“highway=secondary”, 
“highway=tertiary”

Waterways “natural=water”, “water=*”

Figure 1 . Bridge locations in Uganda used for training dataset.
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Binning into unique spatial locations ensures that the model 
is trained and validated on distinct bridges. If the training 
and validation datasets were constructed by splitting across 
the entire duplicate set of images without binning, the model 
would have inevitably validated on a different image from a 
location seen in the training samples, leading to a noisy and 
elevated performance metric due to validation of images the 
model had already seen.

The feature and image counts for both the unique-spatial  
set (UG-U), and the entirety of the data (UG-IID) are shown  
in Table 2.

Table 2 . Feature and image counts.

Images
# 

Bridges
# 

Culverts
# 

Roads
#  

Water
UG-IID 4718 2251 3687 8284 5114 

UG-U 751 339 483 1288 755

To display the range covered by the dataset, we visualize 
sample images drawn from the training set shown in Figure 3.

Figure 3 . Sample images showing the diversity of the dataset.
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For this particular framing of the problem, we tested Mask-
RCNN1 and Fast-RCNN2 models, with poor results. In the 
future, we could try revisiting object detection, but try using 
models that are not based on Region Proposal Networks. It is 
our belief that RCNN models struggle with this type of sparse 
object detection because of requiring proposals and anchors 
to be generated from a fixed set, meaning that if the anchors 
didn’t cover the object, the model will not detect it. 

Given that we are looking for at most two to three objects 
in the scene, we have to utilize a large number of proposals 
to guarantee coverage, but this comes at a computational 
and performance cost as the model needs to process and 
combine more AOIs than it needs. 

In the future, we would like to try single shot learning variants 
such as YOLOv33. Single shot methods are faster, do not 
suffer from region proposal problems and can match RCNN 
performance even on dense tasks, given a good enough 
feature extractor4.

Segmentation
The alternative framing of the problem, and the method 
used for the final model, was to treat bridge detection as a 
semantic segmentation problem. For this task, the model 
generates a prediction at each pixel, classifying whether the 
pixel belongs to a particular class.

We treated the task as segmenting across four classes: 
road, water, bridge, and background. An image that follows 
this segmentation schema is shown in Figure 6. Since we 
also procured annotations for culverts, we tested model 
performance when segmenting road, water, and background, 
as well as a combined “road crossing” class including bridges 
and culverts.

For the model architecture, we tested two variants: 

•  U-Net5, an older model that shows high performance on 
semantic segmentation of data with high spatial resolution 
and a low number of classes, as seen in medical imaging 
and other satellite image tasks.

•  A Fully Convolutional Network6 with a Resnet-50 
backbone, a more modern approach that has achieved high 
performance on similar tasks.

The models were tuned to fit the specific task, and pre-
training was not used because unlike standard image 
datasets consisting of images with three color channels (e.g., 
RGB), satellite imagery typically contains additional spectral 
bands. In this work, the satellite imagery featured four 
spectral bands, including RGB and near-infrared.

Figure 5 . Generation of a bounding box around a bridge.

Figure 6 . Semantic segmentation of pixels across classes.

To fit the images onboard an accelerator for training and 
inference, we chipped the image tiles to 256mx256m in order 
to generate 512x512 pixel images that retain the source spatial  
resolution (i.e., we do not down-sample the image tiles).

Model Topology Selection
Given the problem statement, we had two ways to frame 
the problem as a deep learning task: object detection and 
segmentation. In object detection, classes of objects (e.g., 
people, vehicles, etc.) are detected within images along 
with their locations in the image, typically demarcated with 
bounding boxes. For segmentation, each pixel in an image is 
classified based on whether it portrays, for example, a road, 
waterway, bridge, or background.

Object Detection
For the object detection task, we discard the waterway and 
road labels and try to train a model solely to detect bridges, 
by generating a bounding box encasing the bridge, as shown 
in Figure 5.

Figure 4 . Distribution of nadir angles across the dataset.

Due to the small cardinality of the dataset (n = 751, with only 
n = 339 bridges), as opposed to splitting into a traditional 
70 percent train, 20 percent validation, 10 percent test, we 
trained and evaluated our models on an 80 percent train, 
20 percent validation split and utilized K=5 Cross-Fold 
Validation to determine our final validation performance 
metrics. Moreover, due to the small cardinality of the dataset, 
we opted to train on all available nadir angles within the 
training data. The plot in Figure 4 shows the distribution of 
nadir angles across the dataset.
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In order to compute the F1 metric, we take the generated 
segmentation masks, polygonize them, and evaluate the 
performance of the generated polygons with the ground-
truth bridge polygons by utilizing the algorithm depicted 
in Figure 8. Note that this metric evaluates over the entire 
dataset, and not just an average across images.

We report two variants of the F1 metric. The IoU variant is 
the same as the documented SpaceNet F1 metric referenced 
above—we compute Intersection Over Union values between 
ground truth and proposed bridges, using a 0.5 IoU as a 
threshold for a True Positive. In contrast, the inclusion variant 
is meant to be more reflective of the workflow intended for 
these results. 

Per our discussions with the American Red Cross, rather than 
delivering polygons, we will deliver points. In turn, rather 
than evaluating the polygons, the Inclusion F1 tallies a True 
Positive if the centroid of a generated polygon falls within a 
ground truth polygon. This inclusion metric allows us to focus 
less on perfectly fitting polygons, and more on localizing them.

Training Results
Table 3 shows the model performance on the K=5 Cross 
Validation set. For each row, five different models were 
trained with five different random seeds for a total of 200 
epochs. Each model was trained on an 80 percent subset of 
training data, and validated on the remaining 20 percent. All 
model inputs were normalized utilizing pre-computed mean 
and variance for the dataset. 

We also utilized random rotations, randomly selected from 
15-degree intervals from 0-365 and random vertical and 
horizontal flips to capture the rotational invariance required 
for working with satellite imagery. For the values reported 
below, each row is the average performance for the listed 
model architecture and training regime across the five folds.

Figure 8 . Evaluation workflow.

Model Performance
Polygon Extraction
While we trained our models for semantic segmentation, 
ultimately the task is bridge identification, which requires 
converting from a segmentation mask into a latitude-
longitude (lat-long) point or polygon that localizes the bridge. 
To conduct the bridge identification, we extrapolate polygons 
from the pixels in our produced segmentation masks by 
checking for pixel connectivity, as diagrammed in Figure 7.

These polygons, extracted from pixel coordinates (x-y), are 
then converted into lat-long coordinates by utilizing the 
source image’s affine transform, a piece of metadata that 
provides the mapping between lat-long and x-y pixels for a 
specific image. Given the variances in sensors, nadir angles, 
cloud cover, and time, there is no off-the-shelf mapping 
between pixels and lat-long; depending on the image, a pixel 
can represent different measures, which is why we always use 
the source image’s transform.

Loss & Optimization
During training, we optimized the models’ weights relative 
to the Categorical Cross Entropy loss. We utilized the Adam7 
optimizer and utilized a base learning rate of 1e-4 with three 
different linear learning rate schedules to train the model. 
Two of the schedules utilized the same gamma coefficient of 
0.5 but mutated the learning rate at steps of 25, 50. The third 
variant was trained without mutating the learning rate.

Metrics
During training, we monitor the cross-entropy loss, as well 
as pixel-wise DICE coefficient, and the polygon F1. DICE 
values are computed at the image level and averaged across 
the dataset. This metric is helpful to monitor but is not a 
perfect fit for the object extraction task, as it only measures 
individual pixel performance and is not tied to the bridge 
identification.

In order to measure actual model performance, we utilized 
the SpaceNet F18 metric in order to assess the bridge 
identification. We chose to utilize this metric as it evaluates 
the performance of the actual extracted polygons, in 
contrast to traditional semantic segmentation metrics that 
only measure the performance of pixel-wise classification 
at the image level, without regard for instances of objects 
extracted.

Figure 7 . Transforming semantic segmentation into polygons.
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Table 3 . Model performance on the K=5 Cross Validation set.

Bridge F1 -  
Inclusion

Bridge F1 - IoU Bridge DICE Road DICE Water DICE

UNet - S=0 0 .4130 0.1150 0.4150 0.7959 0.3955

UNet - S=25 0 .3367 0.1097 0.3326 0.8017 0.4034

UNet - S=50 0 .3719 0.1034 0.4022 0.8084 0.3905

FCN - S=0 0 .4487 0.1574 0.4634 0.8180 0.3943

FCN - S=25 0.4605 0.1852 0.4914 0.8296 0.4269

FCN - S=50 0 .4585 0.1850 0.4999 0.8281 0.4440

Analysis & Model Selection
Based on the quantitative results shown above, we opted 
to select the Fully Convolutional Network with a ResNet 50 
backbone and retrained it on the entirety of the training  
data, utilizing the step = 25 training regimen and all the  
same transforms.

Predictions on Southern Uganda
Imagery Selection
In order to run our trained models on Southern Uganda, 
we had to first create a new imagery dataset of candidate 
locations. Given that the Ugandan government and 
OpenStreetMap (OSM) have many of the existing bridges 
labeled, we first set out to generate spatial latitude-longitude 
candidate points where we think there might be a previously 
unknown/unlabeled bridge location.

To generate candidate locations, we began with a bounding 
box around Southern Uganda (two bounding boxes in 
practice, for southwest and southeast separately, as 
illustrated in Figure 9).

Figure 9 . Two polygon regions used to search for candidate 
bridge locations.

Figure 10 . Example bounding box query result showing 
highways and waterways.

Figure 11 . Identified intersection of highway (blue) and 
waterway (red).

To reduce computational complexity, the bounding box was 
divided into smaller areas. For each area, a Python API was 
used to query Overpass for all highways and waterways 
contained within that area, as well as any labeled bridges in 
the area, as illustrated in Figure 10.

Each waterway returned was compared to each highway 
returned, and any intersection points (latitude/longitude) of the  
two feature types were collected as potential candidate points. 
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Candidate points were tested to see if they were located within 
~30 meters of an already known bridge location, as shown in 
Figure 12. Known bridge locations were derived from a Uganda 
government dataset and OSM features returned with property 
‘bridge=yes’. Any candidate points within 30 meters of known 
bridge locations were discarded.

In this methodology, highway and waterway types were not 
used to filter the candidate points (aside from highways 
labeled ‘bridge=yes’); therefore, minor highway and waterway 
categories were included in the candidate points. Employing 
additional filters on highways and waterways would improve 
the likelihood of candidate points containing verifiable bridges.

Once we determined the candidate points, we created 
256mx256m bounding boxes about these points and 
queried Digital Globe’s GDBX Spatial Data platform to pull 
images that contained the anchor boxes. As part of the 
query to GBDX, we filtered out images with more than 35% 
cloud cover, an off-nadir angle larger than 30 degrees, and 
restricted to images captured since January 2017.

From this query, we downloaded a total of 1227 unique 
images. We ran the model through and extracted a total of  
70 unique bridges, shown in Figure 13.

Figure 12 . Left: identified highway/waterway intersection, 
Right: existing bridge location shown in red, intersection 
filtered from candidate locations.

Figure 13 . Bridges extracted by the model.

Sample Predictions
Figure 14 shows the raw segmentation prediction results of 
the model. For all the images, we display the input satellite 
image on the left, the predicted mask in the middle, and the 
mask overlaid on the image on the right.

The color map is as follows: 

• Background: white

• Road: green

• Water: blue

• Bridge: orange

Successes

7



White Paper | Intel & American Red Cross Southern Uganda Bridge Identification

Figure 14 . Successful raw segmentation prediction results of 
the model.
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Figure 15 . Unsuccessful raw segmentation prediction results 
of the model.

Failures
While the above predictions successfully extract the bridges in the scene, the model is far from perfect. As shown in Figure 
15, the model struggles in particular with road types not found in the training data, as well as in situations where clouds or 
atmospheric noise hinder the signal.

Note that the majority of the failures are the result of misalignment with the training data. In particular, the missed roads fall 
below the threshold of what was labeled as a road for this project. The small dirt and grass paths were not fed to the model 
as road samples, so it is not surprising it fails to segment them. In the images above, there are also cases of unsegmented 
bridges, with segmented roads. It is unclear whether the non-segmented bridges are bridges or culverts, which we did not 
train to detect.
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