
Security User Guide
Intel® Programmable Acceleration Card with
Intel® Arria® 10 GX FPGA

Subscribe
Send Feedback

UG-20263 | 2020.03.06
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=xfr1578356347803
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-pac-security-a10gx.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/xfr1578356347803.html

Contents

1. Overview.. 3
1.1. About This Document...3
1.2. Prerequisites...3
1.3. Related Documentation.. 3
1.4. Glossary...3

2. Intel FPGA PAC Security Features... 6
2.1. Secure Image Updates... 7
2.2. Anti-Rollback Capability.. 10
2.3. Key Management... 10
2.4. Authentication...11
2.5. Encryption.. 12

3. Intel FPGA PAC Security Flow... 13
3.1. Installing PACSign..15
3.2. PACSign Tool...16
3.3. Creating Unsigned Images ... 17
3.4. Using an HSM Manager...18
3.5. Creating Keys..18

3.5.1. OpenSSL Key Creation ...18
3.5.2. HSM Key Creation.. 19

3.6. Root Entry Hash Bitstream Creation ...21
3.7. Signing Images... 22

3.7.1. Creating OpenCL* Bitstreams.. 23
3.8. Creating a CSK ID Cancellation Bitstream ...28
3.9. PACSign PKCS11 Manager *.json Reference...29
3.10. Creating a Custom HSM Manager... 30

3.10.1. HSM_MANAGER.get_public_key(public_key).. 31
3.10.2. HSM_MANAGER.sign(data, key)... 32
3.10.3. Signing Operation Flow... 33

3.11. PACSign Man Page... 33

4. Using fpgasupdate.. 36
4.1. Troubleshooting... 37

5. Document Revision History... 41

Contents

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Overview

1.1. About This Document

Reference this user guide to understand and enable the security features such as the
Trusted Control Module (TCM) and AFU signing for the Intel® Programmable
Acceleration Card with Intel Arria® 10 GX FPGA (Intel PAC with Intel Arria 10 GX
FPGA).

1.2. Prerequisites

You must ensure that the host and Intel FPGA PAC are using the current version of
OPAE tools. Please refer to the latest version of the User Guide for your Intel FPGA
PAC for directions on how to determine if you have the current version of tools.

1.3. Related Documentation

Refer to the following documentation while using this guide:

Table 1. Related Documentation

Document Description

Intel Acceleration Stack Quick Start Guide for Intel
Programmable Acceleration Card with Intel Arria 10 GX
FPGA

How to install and update OPAE and the FPGA Interface
Manager (FIM).

Related Information

Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration Card
with Intel Arria 10 GX FPGA

1.4. Glossary

Table 2. Glossary

Acronym/Term Expansion Description

AFU Accelerator Functional Unit Hardware Accelerator implemented in FPGA logic
which offloads a computational operation for an
application from the CPU to improve performance.

ASE AFU Simulation Environment Co-simulation environment that allows you to use the
same host application and AF in a simulation
environment. ASE is part of the Intel Acceleration
Stack for FPGAs.

continued...

UG-20263 | 2020.03.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#xxd1571855653400
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#xxd1571855653400
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Acronym/Term Expansion Description

BIP Bitstream Authentication IP Module loaded into the Intel Arria 10 GX FPGA PR
region that contains the cryptographic blocks
necessary to perform bitstream authentication
operations.

CCI-P Core Cache Interface CCI-P is the standard interface AFUs use to
communicate with the host.

CSK Code Signing Key A key used to validate integrity and authenticity of a
block of code. Authenticity of this key is established
through signing with a root key.

ECDSA Elliptical Curve Digital Signature
Algorithm

An algorithm based on elliptic curve cryptography to
create signatures that can be used to evaluate the
authenticity of an object.

FIU FPGA Interface Unit FIU is a platform interface layer that acts as a bridge
between platform interfaces like PCIe* and AFU-side
interfaces such as CCI-P.

FIM FPGA Interface Manager The FPGA functional block containing the FPGA
Interface Unit (FIU) and external interfaces for
memory, networking, etc.
The FIM may also be referred to as BBS (Blue-Bits,
Blue Bit Stream) in the Acceleration Stack installation
directory tree and in source code comments.
The Accelerator Function (AF) interfaces with the FIM
at run time.
The FIM is provided with the Intel PAC with Intel Arria
10 GX FPGA.

HSM Hardware Security Module A secure hardware device to hold, protect, and allow
access to cryptographic objects; performs
cryptographic operations in a trusted environment.

NIST p Curve National Institute of Standards and
Technology prime Curve

P256 is used throughout this document. Without any
other associations added, P256 means NIST P256
curves, where p is a 256-bit prime.

OPAE Open Programmable Acceleration
Engine

The OPAE is a software framework for managing and
accessing AFs.

PACSign PAC image signing tool A standalone tool to manage root entry hash
bitstream creation, image signing, and cancellation
bitstream creation

PKCS Public Key Cryptography Standard PKCS#11 is used throughout this document.
PKCS#11 is a commonly used interface for
commercial hardware security modules (HSMs).

PR Partial Reconfiguration The ability to dynamically reconfigure a portion of an
FPGA while the remaining FPGA design continues to
function.

Root Key - A key designated as the primary, constant value for
authentication. Typically only used to sign other keys,
forming the root of all key chains.

RoT Root of Trust A source that can be trusted, such as the TCM in the
Intel FPGA PAC.

continued...

1. Overview

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Acronym/Term Expansion Description

RSU Remote System Update Ability to update firmware and FPGA bitstreams over
PCIe.

SR Static Region Portion of the FPGA design that does not change. In
the Intel PAC with Intel Arria 10 GX FPGA, the static
region is the FIM

TCM Trusted Control Module Functionality implemented in the SR of the Intel PAC
with Intel Arria 10 GX FPGA to manage the secure
updates of BMC firmware, FIM updates, GBS updates,
and key cancellation.

1. Overview

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Intel FPGA PAC Security Features
The Intel Programmable Acceleration Card with Intel Arria 10 GX FPGA contains logic
in the static region (SR) called the Trusted Control Module (TCM). The TCM acts as a
Root of Trust (RoT) and enables the secure update features of the Intel FPGA PAC. The
TCM RoT includes features that may help prevent the following:

• Loading or executing of unauthorized code or designs.

• Disruptive operations attempted by unprivileged software, privileged software, or
the host BMC.

• Unintended execution of older code or designs with known bugs or vulnerabilities
by enabling the TCM to revoke authorization.

The TCM RoT also enforces several other security policies relating to access through
various interfaces, as well as protecting the on-board flash through write rate
limitation.

The TCM RoT verifies:

• Board Management Controller (BMC) firmware updates

• FIM images.

• AFU (partial reconfiguration region) images.

The TCM RoT is programmed with Intel root entry hashes for Intel FIM images during
a one-time secure update (OTSU) to preproduction units or at manufacturing, but
does not contain a root entry hash for AFUs. You must create your AFU root entry
hash bitstream using the PACSign tool provided by Intel. The TCM RoT accepts and
programs exactly one AFU root entry hash bitstream.

Note: This operation cannot be reversed, and after this operation, AFUs without correct
signatures are refused by the Intel PAC with Intel Arria 10 GX FPGA. A correct
signature is one created by a Code Signing Key (CSK) that is both signed by the root
key and not yet canceled.

In cases where you have a pre-security production Intel FPGA PAC, you must perform
a one-time secure update. Please refer to the One-Time Secure Update section in the
Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration Card
with Intel Arria 10 GX FPGA for more information.

Related Information

Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration Card
with Intel Arria 10 GX FPGA

UG-20263 | 2020.03.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#xxd1571855653400
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#xxd1571855653400
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.1. Secure Image Updates

The TCM RoT requires that all BMC firmware and FIM images are authenticated using
ECDSA before loading and executing on the card. The TCM RoT may optionally require
that AFU images are authenticated before loading and executing as well. The TCM RoT
achieves this by storing the root entry hashes for the three image types in a write-
once location in on-board flash memory, and subsequently verifying the signature of
all images against these hashes. The board manufacturer provides the root entry hash
for the BMC firmware. Intel provides the root entry hash for FIM images. You create
and program the root entry hash bitstream for AFU images. Until you program the AFU
root entry hash bitstream, the Intel FPGA PAC does not authenticate an AFU image
prior to loading and executing the image

Table 3. Keys and Authentication

Root Key Origin Used to Authenticate

BMC root key Intel FPGA PAC manufacturer BMC Firmware Updates

Intel FIM root key Intel Intel FIM Updates

Partial reconfiguration (PR) AFU root
key

Customer AFUs

When you are in the development or validation phase and have not programmed your
root entry hash bitstream, you create AFU images that contain the appropriate
headers but are not signed using keys. This process is called creating an unsigned
image. An Intel FPGA PAC that has not had the AFU root entry hash bitstream
programmed runs any unsigned or signed AFU image. This capability allows you to
test and validate the functionality of your AFU image prior to fully signing the image
for deployment into a production environment. Please refer to the Creating Unsigned
Images section for more information.

You program your AFU root entry hash bitstream to enable AFU image authentication.
This process establishes you as the owner of the Intel PAC with Intel Arria 10 GX
FPGA. The Intel PAC with Intel Arria 10 GX FPGA then requires you to create
signatures based on this root entry for each AFU you intend to load on the Intel FPGA
PAC. Intel strongly recommends that you program the root entry hash bitstream for
Intel FPGA PACs used in production environments. You must follow the following flow
to enable user AFU image authentication on your Intel FPGA PAC.

2. Intel FPGA PAC Security Features

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1. Secure User Image Flow

Create your Keys

Create your Root Entry Hash Bitstream

Program the Root Entry Hash Bitstream
into the Intel FPGA PAC

Sign your AFU

Program your AFU
on the Intel FPGA PAC

2. Intel FPGA PAC Security Features

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The chapters within this user guide cover the steps in this flow:

1. Create your keys: Create your keys using a Hardware Security Module (HSM) or
OpenSSL. You need at least two keys, one which you designate as a root key and
another you designate as a code signing key (CSK). These keys are asymmetric
keys, meaning they consist of an underlying pair of keys. The first is called a
private key and the second is a public key that is derived from the private key. A
private key is used to create signatures over objects that can be verified with the
corresponding public key. The private key must be kept confidential, as anyone in
possession of the private key can create a signature; conversely, if you maintain
the confidentiality of the private key, then signatures can be trusted to originate
only from you. The public key cannot create signatures or be used to derive the
original private key. Therefore, it is not required nor important to protect the
confidentiality of the public key; the public key is considered public information.

2. Create your root entry hash bitstream: Use the PACSign tool to create a
bitstream that contains the root entry hash. You create a root entry hash
bitstream from your root public key. This hash is a representation of your root
public key and can only be created with an exact copy of the root public key. The
root entry hash bitstream is then programmed to the Intel FPGA PAC. The Intel
FPGA PAC then uses this hash to verify the integrity of the root public key, which is
included with all images transmitted to an Intel FPGA PAC. After the integrity of
the root public key is confirmed, it can be used in the signature verification
process.

3. Program your root entry hash bitstream into the Intel FPGA PAC. You must
use the fpgasupdate command to program the bitstream containing your root
entry hash into the flash on the board. Until you program the root entry hash
bitstream, the Intel FPGA PAC loads and executes any signed or unsigned image.
Intel strongly recommends that you create and program a root entry hash
bitstream for Intel FPGA PACs deployed in production environments. Please refer
to the Using fpgasupdate chapter for more information.

Note: Only the owner who is deploying the Intel FPGA PAC must program the root
entry hash bitstream.

4. Sign your AFU image. Using PACSign you can sign your image with the root
public key and code signing key. Please refer to the Intel FPGA PAC Security Flow
chapter for more information.

5. Program your AFU image onto the Intel FPGA PAC. Use the fpgasupdate
command to program your AFU into flash. The Intel FPGA PAC verifies the AFU to
ensure only an authorized bitstream is loaded. The root public key, code signing
public key, signature of the code signing public key, and signature of the code or
design are all attached to the image transmitted to the Intel FPGA PAC. The card
first verifies the integrity of the root public key, then verifies the signature of the
code signing public key using the root public key, and finally proceeds to verify the
signature of the code or design using the code signing public key. The code or
design is only accepted if all three of these steps are completed successfully.

Related Information

• Creating Unsigned Images on page 17

• Intel FPGA PAC Security Flow on page 13

2. Intel FPGA PAC Security Features

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2. Anti-Rollback Capability

The TCM RoT provides anti-rollback capability through the code signing key ID
cancellation feature. A CSK is assigned an ID, a number between 0-127, during the
signing process. CSK ID cancellation information is stored in 128-bit fields in write-
once locations in flash. When a code signing key ID is canceled, the TCM RoT rejects
all signatures created with a CSK that is assigned that ID. If a CSK ID that is used in
an old update is canceled after applying a new update with a different CSK ID, the
TCM RoT rejects the signature of the old update, preventing a rollback to the old
update.

Note: If you cancel an AFU CSK ID and do not update your AFU image, the image continues
to be operational until you update it. The new image must be signed with a CSK that
is assigned an uncanceled ID.

2.3. Key Management

The Intel TCM RoT uses ECDSA with a key length of 256 bits to authenticate:

• BMC firmware update images

• FIM images

• AFU (partial reconfiguration) images

The Intel TCM RoT supports separate key chains for each image, and each key chain
must consist of a root key and a CSK.

The Intel TCM RoT does not support a signature of any image with a root key. You
must use a key designated as a CSK to sign your image. Steps you are responsible for
when creating keys, root entry hashes and programming your image on the Intel
FPGA PAC are:

• You must manage assigning CSK IDs to CSKs and consistently using the same ID
for a given CSK. Neither an Intel FPGA PAC nor the PACSign tool associate a
particular key's value with its ID. It is possible to assign a given CSK multiple IDs,
or multiple CSKs to a given ID. This may result in unintended consequences when
attempting to cancel a CSK. Intel recommends exclusive ID assignments for each
CSK.

• You are responsible for creating the appropriate key cancellation bitstreams. You
must use the same ID number for key cancellation as the one you assigned to the
CSK at key creation. Key cancellation bitstreams must be signed with the
applicable root key. This helps avoid denial of service through an unintended
cancellation of all key values.

• You are responsible for generating and managing your AFU image root key and
CSKs. You generate the AFU image root entry hash bitstream using your root key.

• You are also responsible for programming this root entry hash bitstream on the
Intel FPGA PAC. If your Intel FPGA PAC does not have a programmed AFU root
entry hash bitstream stored, it executes any signed or unsigned AFU.

Note: Intel strongly recommends programming an AFU root entry hash bitstream.
You must protect the confidentiality of the root private key throughout the
life of the Intel FPGA PAC.

The Intel TCM RoT stores a root entry hash bitstreams in the on-board flash for:

2. Intel FPGA PAC Security Features

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. BMC firmware images

2. FIM images

3. AFU (partial reconfiguration region) images

The TCM is architected so that all root entry hashes cannot be revoked, changed, or
erased once programmed.

If you have a board that has not been updated with the TCM RoT, you must use the
one-time secure update to program the Intel root entry hash bitstreams for the BMC
firmware and Intel FIM images on your existing Intel FPGA PAC. New Intel FPGA PACs
come with these root entry hashes programmed at manufacturing time.

The Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration
Card with Intel Arria 10 GX FPGA further describes:

• Determining whether your board has been updated with the required hashes

• Using one-time secure update

In the future, updates to the BMC firmware or FIM images may necessitate a
respective key cancellation in order to help prevent an unintended rollback to a prior
version. In this case, Intel provides the update with a signed CSK that has a different
ID than all prior updates. Intel provides a separate key cancellation bitstream to
cancel the appropriate Intel keys. You may test an update by applying it before
programming the key cancellation bitstream. The prior BMC firmware or FIM update
images continue to be accepted as valid updates until the new key cancellation
bitstream is applied.

Related Information

Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration Card
with Intel Arria 10 GX FPGA

2.4. Authentication

To enable authentication:

1. Use the PACSign tool to create a root entry hash bitstream.

2. Use the fpgasupdate tool to program the bitstream onto the Intel FPGA PAC.

$ sudo fpgasupdate [--log-level=<level>] file [bdf]

Note: After the root entry hash bitstream is programmed, the Intel FPGA PAC must be power
cycled.

All key operations are done using PACSign. PACSign is a standalone tool that is not
required to be run on a machine with the Intel FPGA PAC installed. Key creation,
signing, and cancellation bitstream creation are not runtime operations and can be
performed at any time. The signing process prepends the signature to the AFU image
file. The TCM RoT does not need access to the HSM at any point to verify a signature.

The signing process requires a root key and a Code Signing Key (CSK). PACSign first
signs the CSK with the root key, and then signs the image with the CSK. The signature
process prepends two “blocks” of data to the image file.

2. Intel FPGA PAC Security Features

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

11

https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#xxd1571855653400
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#xxd1571855653400
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you are using an Intel Acceleration Stack version 1.2.1 or greater, your AFUs must
have prepended signature blocks, even if the corresponding root entry hash bitstream
has not been programmed. PACSign allows you to prepend the required blocks with an
empty signature chain.

2.5. Encryption

AFU Encryption is not supported on the Intel PAC with Intel Arria 10 GX FPGA.

2. Intel FPGA PAC Security Features

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel FPGA PAC Security Flow
The following steps describe the flow to enable Intel FPGA PAC security. See the
corresponding sections in this chapter for detailed instructions on each step.

1. Install PACSign.

2. If you are in development, you may optionally create an unsigned AFU image to
test and validate the functionality of your AFU image prior to fully signing the
image for deployment into a production environment. Please refer to the Creating
Unsigned Images section for more information.

3. Create your root key and CSK(s). You can use OpenSSL or an HSM for this
action.

Figure 2. Key Creation Using OpenSSL

Open SSL
key_pr_root_public.pem
key_pr_root_private.pem
key_pr_csk[x]_public.pem
key_pr_csk[x]_private.pem

Figure 3. Key Creation Using HSM pkcs11_tool

Key Pair Generation Command
option

(--keypairgen)
Hardware
Security
Module

pkcs11-tool

4. Create your root entry hash bitstream.

UG-20263 | 2020.03.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 4. Creating Root Entry Hash Bitstream with OpenSSL

PACSignkey_pr_root_public.pem
key_pr_root_private.pem

root_public_program_ssl.gbs Output

OpenSSL

SHA256

Root Entry Hash*.pem files

*.pem

Figure 5. Creating Root Entry Hash Bitstream with HSM pkcs11_manager

PACSign*.json file root_public_program_hsm.gbsOutput

Hardware
Security
Module

SHA256

Root Entry Hash

requested key
and hash operations

5. Program your root entry hash bitstream onto the Intel FPGA PAC. You
must power cycle the Intel FPGA PAC after you have programmed the root entry
hash bitstream.

6. Sign your AFU.

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Signing your image with OpenSSL

PACSign *_afu_signed_ssl.gbs
Output

OpenSSL

signatures

Image with Block0, Block1 prepended

key_pr_root_public_key.pem
key_pr_csk[x]_pubic_key.pem
*_afu.gbs

Key File and Image inputs

keys, image file

Figure 7. Signing your image with pkcs11_manager

PACSign *_afu_signed_ssl.gbsOutput

Hardware
Security
Module

signatures

Image with Block0, Block1 prepended

hsm.json

*_afu.gbs

Key File and Image inputs

image file, requested key and
signature operations

7. Program your AFU into the Intel FPGA PAC. For directions on how to program
your AFU, refer to the Using fpgasupdate chapter.

Related Information

• Creating Unsigned Images on page 17

• Using fpgasupdate on page 36

3.1. Installing PACSign

PACSign is a standalone tool that interfaces with your HSM to manage root entry hash
bitstream creation, image signing, and cancellation bitstream creation. PACSign is
implemented in Python and requires Python 3. Using PACSign with the PKCS11

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

interface requires the python-pkcs11 package. PACSign does not need an Intel FPGA
PAC installed in the system to run. Systems where signed images are being deployed
to an Intel FPGA PAC do not need PACSign installed nor access to the HSM.

Note: You must install Python 3 to use PACSign.

Note: The Acceleration Stack includes the PACSign package. You can check if you already
have this package by typing: rpm -qa| grep opae.

1. Unpack the opae.pac_sign-1.0.3.tar.gz tarball, which contains the
opae.pac_sign-1.0.3-1.x86_64.rpm package.

sudo yum install opae.pac_sign-1.0.3-1.x86_64.rpm

2. Ensure you have installed Python 3, the Python 3 development libraries, and the
Python 3 version of the python-pkcs11 package on your system.

3. Use your system package installer to install the .rpm package.
PACSign installs to your /usr/local/bin directory and the necessary
Python3.6 modules install to your /usr/local/lib directory.

Note: PACSign depends on a Python3 interpreter version 3.6 or later. You must
either install Python3 to, or create a symlink in, /usr/local/bin for
PACSign to work. You must also ensure that the python modules PACSign
depends on are visible to your python3 interpreter. You can do this by
including the path /usr/local/lib/python3.6/site-packages/ in the
PYTHONPATH environment variable.

export PYTHONPATH=/usr/local/lib/python3.6/site-packages/

3.2. PACSign Tool

The PACSign utility is installed on your path.

• Use PACSign by simply calling it directly with the command PACSign

• Calling PACSign with the -h option shows a help message describing the tool
usage.

• Typing PACsign <image_type> -h shows options available for that image type.

[PACSign_Demo]$ PACSign -h
usage: PACSign [-h] {SR,FIM,BBS,BMC,BMC_FW,PR,AFU,GBS} ...

Sign PAC bitstreams

optional arguments:
-h, --help show this help message and exit

Commands:
Image types
{SR,FIM,BBS,BMC,BMC_FW,PR,AFU,GBS}
Allowable image types
SR (FIM, BBS) Static FPGA image
BMC (BMC_FW) BMC image
PR (AFU, GBS) Reconfigurable FPGA image

[PACSign_Demo]$ PACSign AFU -h
usage: PACSign PR [-h] -t {UPDATE,CANCEL,RK_256,RK_384} -H HSM_MANAGER
 [-C HSM_CONFIG] [-r ROOT_KEY] [-k CODE_SIGNING_KEY]
 [-d CSK_ID] [-i INPUT_FILE] [-o OUTPUT_FILE] [-y] [-v]

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

optional arguments:
 -h, --help show this help message and exit
 -t {UPDATE,CANCEL,RK_256,RK_384}, --cert_type {UPDATE,CANCEL,RK_256,RK_384}
 Type of certificate to generate
 -H HSM_MANAGER, --HSM_manager HSM_MANAGER
 Module name for key / signing manager
 -C HSM_CONFIG, --HSM_config HSM_CONFIG
 Config file name for key / signing manager (optional)
 -r ROOT_KEY, --root_key ROOT_KEY
 Identifier for the root key. Provided as-is to the key
 manager
 -k CODE_SIGNING_KEY, --code_signing_key CODE_SIGNING_KEY
 Identifier for the CSK. Provided as-is to the key
 manager
 -d CSK_ID, --csk_id CSK_ID
 CSK number. Only required for cancellation certificate
 -i INPUT_FILE, --input_file INPUT_FILE
 File name for the image to be acted upon
 -o OUTPUT_FILE, --output_file OUTPUT_FILE
 File name in which the result is to be stored
 -y, --yes Answer all questions with "yes"
 -v, --verbose Increase verbosity. Can be specified multiple times

3.3. Creating Unsigned Images

The TCM does not accept an AFU without the prepended authentication blocks
generated by PACSign, even if an AFU root entry hash bitstream has not been
programmed. If you want to operate an Intel FPGA PAC without a root entry hash
bitstream programmed, such as in a development environment, you must still use
PACSign to prepend the authentication blocks but you may do so with an empty
signature chain. An image with prepended authentication blocks containing an empty
signature chain is called an unsigned image. PACSign supports the creation of an
unsigned image by using the UPDATE operation without specifying keys. Intel
recommends using signed images in production deployments.

1. Create unsigned bitstream.

Using OpenSSL:

[PACSign_Demo]$ PACSign PR -t UPDATE -H openssl_manager -i hello_afu.gbs \
-o hello_afu_unsigned_ssl.gbs

Using HSM:

[PACSign_Demo]$ PACSign PR -t UPDATE -H pkcs11_manager -C softhsm.json \
-i hello_afu.gbs -o hello_afu_unsigned_hsm.gbs

The output prompts you to enter Y or N to continue generating an unsigned
bitstream.

No root key specified. Generate unsigned bitstream? Y = yes, N = no: Y
No CSK specified. Generate unsigned bitstream? Y = yes, N = no: Y

2. Program the unsigned bitstream.

[PACSign_Demo]$ sudo fpgasupdate hello_afu_unsigned_ssl.gbs b2:00.0

Note: If you attempt to program an AFU without the prepended authentication
blocks, the TCM rejects the update and the Intel FPGA PAC requires a power
cycle before the next programming attempt.

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4. Using an HSM Manager

The PACSign tool does not implement any cryptographic functions. PACSign must
interact with a cryptographic service, and it does this through modules called
Hardware Security Module (HSM) managers. PACSign provides the following
managers:

• openssl_manager: interfaces with OpenSSL

• pkcs11_manager: interfaces with any HSM implementing PKCS#11

Use the -H option with the PACSign command to select an HSM manager. The
following sections provide examples for the PACSign OpenSSL manager using
OpenSSL v1.1.1d, and the PACSign PKCS #11 manager using SoftHSM v2.5.0.
Examples of key creation and management with both OpenSSL and SoftHSM (through
the utilities softhsm2-util and pkcs11-tool) are also provided. To create your own
custom HSM manager, refer to the Custom HSM Manager Creation topic more
information.

Related Information

Creating a Custom HSM Manager on page 30

3.5. Creating Keys

Create your root and code signing keys using your desired key management utility
(HSM or OpenSSL). Assign your key CSK IDs during key creation. Intel recommends
that you consistently use the same ID for a given key across all image signings.

3.5.1. OpenSSL Key Creation

When using OpenSSL, create a private key and then create the corresponding public
key. The PACSign OpenSSL manager requires specific tags in the key file names using
a format: key_<image_type>_<key_type>_<key_visibility>_key.pem.

Table 4. PACSign OpenSSL Manager Key File Name Requirements

Filename Tag Options Description

image_type • pr

• sr

Identifies image type, partial reconfiguration or
static region, for which the key is intended.
• For Intel PAC with Intel Arria 10 GX FPGA, use;

key_pr_<key_type>_<key_section>_key.p
em

key_type • root

• csk<x>

Identifies key type. <x> specifies an ID that you use
for cancellation.
• Example: key_pr_csk12_private_key.pem

key_visibility • public

• private

Identifies the key visibility.

The following example creates a root key and two code signing keys using OpenSSL.

1. Create the root private key:

[PACSign_Demo]$ openssl ecparam -name secp256r1 -genkey -noout \
-out key_pr_root_private_key.pem

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Output:

using curve name prime256v1 instead of secp256r1

2. Create the root public key:

[PACSign_Demo]$ openssl ec -in key_pr_root_private_key.pem -pubout \
-out key_pr_root_public_key.pem

Output:

read EC key
writing EC key

3. Create private CSK1:

[PACSign_Demo]$ openssl ecparam -name secp256r1 -genkey -noout \
-out key_pr_csk1_private_key.pem

Output:

using curve name prime256v1 instead of secp256r1

4. Create public CSK1:

[PACSign_Demo]$ openssl ec -in key_pr_csk1_private_key.pem -pubout \
-out key_pr_csk1_public_key.pem

Output:

read EC key
writing EC key

5. Create private CSK2:

[PACSign_Demo]$ openssl ecparam -name secp256r1 -genkey -noout \
-out key_pr_csk2_private_key.pem

Output:

using curve name prime256v1 instead of secp256r1

6. Create public CSK2:

[PACSign_Demo]$ openssl ec -in key_pr_csk2_private_key.pem -pubout \
-out key_pr_csk2_public_key.pem

Output:

read EC key
writing EC key

3.5.2. HSM Key Creation

If you are using an HSM, you need one token to create and store the root and code
signing keys. The following example initializes a token using SoftHSM, with separate
security officer and user PINs.

[PACSign_Demo]$ softhsm2-util --init-token --label pac-hsm --so-pin hsm-owner \
--pin pac-afu-signer --free

Output:

Slot 0 has a free/uninitialized token.
The token has been initialized and is reassigned to slot 1441483598

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After you create a token, you can create keys in that token. The following example
initializes a root and two code signing keys in the token created above, similarly using
pkcs11-tool to interact with SoftHSM. The HSM, not PACSign, uses the key ID
provided in this example. PACSign uses CSK IDs from a configuration *.json file in
PKCS11 mode. You must manage consistency across ID values in the HSM and those
used by PACSign. See the PACSign PKCS11 Manager *.json Reference topic for more
information on the *.json file format.

1. Initialize the root key:

[PACSign_Demo]$ pkcs11-tool --module=/usr/local/lib/softhsm/libsofthsm2.so \
--token-label pac-hsm --login --pin pac-afu-signer --keypairgen \
--mechanism ECDSA-KEY-PAIR-GEN --key-type EC:secp256r1 \
--usage-sign --label root_key --id 0

Output:

Key pair generated:
Private Key Object; EC
label: root_key
ID: 00
Usage: decrypt, sign, unwrap
Public Key Object; EC EC_POINT 256 bits
EC_POINT:
0441043d3756347e6c257dac085574cc1cd984cdeee2c1059a0f035dabc3ad6e1950c8717dc7
ac8451a90c2471e95f4a69d6517f02f678830280f90a479c76a3e95d64
EC_PARAMS: 06082a8648ce3d030107
label: root_key
ID: 00
Usage: encrypt, verify, wrap

2. Initialize the CSK1:

[PACSign_Demo]$ pkcs11-tool --module=/usr/local/lib/softhsm/libsofthsm2.so \
--token-label pac-hsm --login --pin pac-afu-signer --keypairgen \
--mechanism ECDSA-KEY-PAIR-GEN --key-type EC:secp256r1 \
--usage-sign --label csk_1 --id 1

Output:

Key pair generated:
Private Key Object; EC
label: csk_1
ID: 01
Usage: decrypt, sign, unwrap
Public Key Object; EC EC_POINT 256 bits
EC_POINT:
0441041a827c903b5da8478c81fe652208704f0621b984190cd961ee154ac5c3ba772d1caa26
964a189262ee31b8e5d77898f293c0589b350103037b664d31adf68924
EC_PARAMS: 06082a8648ce3d030107
label: csk_1
ID: 01
Usage: encrypt, verify, wrap

3. Initialize CSK2:

[PACSign_Demo]$ pkcs11-tool --module=/usr/local/lib/softhsm/libsofthsm2.so \
--token-label pac-hsm --login --pin pac-afu-signer --keypairgen \
--mechanism ECDSA-KEY-PAIR-GEN --key-type EC:secp256r1 \
--usage-sign --label csk_2 --id 2

Output:

Key pair generated:
Private Key Object; EC
label: csk_2
ID: 02

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage: decrypt, sign, unwrap
Public Key Object; EC EC_POINT 256 bits
EC_POINT:
04410495f7556912d8753cf873be7a54e7d88c28bca672496abd90d9b44cc95cf50df9169b7a
d043a7340003a2bf96cb461e0575319b541ceb5d873d06334b30d208cc
EC_PARAMS: 06082a8648ce3d030107
label: csk_2
ID: 02
Usage: encrypt, verify, wrap

4. After keys are created in your token, it may be useful to inspect the token to
verify the expected keys, labels, and IDs are present.

[PACSign_Demo]$ pkcs11-tool --module=/usr/local/lib/softhsm/libsofthsm2.so \
--token-label pac-hsm --login --pin pac-afu-signer -O

Output:

Public Key Object; EC EC_POINT 256 bits
EC_POINT:
04410495f7556912d8753cf873be7a54e7d88c28bca672496abd90d9b44cc95cf50df9169b7a
d043a7340003a2bf96cb461e0575319b541ceb5d873d06334b30d208cc
EC_PARAMS: 06082a8648ce3d030107
label: csk_2
ID: 02
Usage: encrypt, verify, wrap
Public Key Object; EC EC_POINT 256 bits
EC_POINT:
0441043d3756347e6c257dac085574cc1cd984cdeee2c1059a0f035dabc3ad6e1950c8717dc7
ac8451a90c2471e95f4a69d6517f02f678830280f90a479c76a3e95d64
EC_PARAMS: 06082a8648ce3d030107
label: root_key
ID: 00
Usage: encrypt, verify, wrap
Private Key Object; EC
label: root_key
ID: 00
Usage: decrypt, sign, unwrap
Private Key Object; EC
label: csk_2
ID: 02
Usage: decrypt, sign, unwrap
Private Key Object; EC
label: csk_1
ID: 01
Usage: decrypt, sign, unwrap
Public Key Object; EC EC_POINT 256 bits
EC_POINT:
0441041a827c903b5da8478c81fe652208704f0621b984190cd961ee154ac5c3ba772d1caa26
964a189262ee31b8e5d77898f293c0589b350103037b664d31adf68924
EC_PARAMS: 06082a8648ce3d030107
label: csk_1
ID: 01
Usage: encrypt, verify, wrap

Related Information

PACSign PKCS11 Manager *.json Reference on page 29

3.6. Root Entry Hash Bitstream Creation

In order to program the root entry hash to an Intel FPGA PAC, you must use PACSign
to create a root entry hash bitstream.

1. In your PACSign command, specify the type RK_256 and select the appropriate
HSM manager and configuration.

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To create a root entry hash bitstream using OpenSSL and the key generated in
the OpenSSL Key Creation topic, type:

[PACSign_Demo]$ PACSign AFU -t RK_256 -H openssl_manager \
-r key_pr_root_public_key.pem -o root_public_program_ssl.gbs

• To create a root entry hash bitstream using a SoftHSM and the root key
generated in the HSM Key Creation topic, type:

[PACSign_Demo]$ PACSign AFU -t RK_256 -H pkcs11_manager \
-C softhsm.json -r root_key -o root_public_program_hsm.gbs

Note: PACSign requires an HSM configuration *.json file to request the
correct key from the HSM. For more information about the structure and
contents of the *.json file, refer to the PACSign PKCS11 Manager .json
Reference topic.

2. After creating the root entry hash bitstream, program the bitstream to an Intel
FPGA PAC using the fpgasupdate command as follows:

$ sudo fpgasupdate root_public_program_ssl.gbs 05:00.0

This operation is permanent and irreversible. After an AFU root entry hash
bitstream is programmed, the Intel FPGA PAC validates an AFU signature prior to
loading. For more details on key management, see the Key Management topic. For
more information on how to use fpgasupdate, refer to the Intel Acceleration
Stack Quick Start Guide for Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA.

Related Information

• PACSign PKCS11 Manager *.json Reference on page 29

• HSM Key Creation on page 19

• Key Management on page 10

• Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration
Card with Intel Arria 10 GX FPGA

3.7. Signing Images

After the root and code signing keys have been created, you may sign your AFU. Use
the PR bitstream type with the UPDATE identifier to perform this operation, and
specify the HSM configuration, root key, code signing key, and image input and output
file names.

The following example demonstrates image signing using OpenSSL and the root and
code signing keys generated in OpenSSL Key Creation topic.

[PACSign_Demo]$ PACSign PR -t UPDATE -H openssl_manager \
-r key_pr_root_public_key.pem -k key_pr_csk1_public_key.pem -i hello_afu.gbs \
-o hello_afu_signed_ssl.gbs

The following example demonstrates image signing using SoftHSM PKCS11 and the
root and code signing keys generated in HSM Key Creation topic. Refer to the PACSign
PKCS11 Manager .json Reference topic for more information on the *.json file used.

[PACSign_Demo]$ PACSign PR -t UPDATE -H pkcs11_manager -C softhsm.json \
-r root_key -k csk_1 -i hello_afu.gbs -o hello_afu_signed_hsm.gbs

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

22

https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#xxd1571855653400
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#xxd1571855653400
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can program signed bitstreams on your Intel FPGA PAC by using the
fpgasupdate tool and performing a remote system update. An Intel FPGA PAC only
authenticates signed bitstreams after a root entry hash bitstream has been
programmed. An Intel FPGA PAC that has not been programmed with a root entry
hash bitstream accepts a signed bitstream and ignores the contents of the signature
chain.

If you sign your image with a canceled CSK and attempt to program the Intel FPGA
PAC, the BMC recognizes the bitstream as corrupted, reports an error and you must
power cycle the Intel FPGA PAC to recover the card.

Related Information

• Root Entry Hash Bitstream Creation on page 21

• HSM Key Creation on page 19

• PACSign PKCS11 Manager *.json Reference on page 29

3.7.1. Creating OpenCL* Bitstreams

Creating signed or unsigned OpenCL* bitstreams requires some additional steps,
because the AFU is embedded in the FPGA hardware configuration (.aocx) file, which
is derived from an OpenCL compile.

The sign_aocx.sh script (distributed in $AOCL_BOARD_PACKAGE_ROOT/linux64/
libexec/) creates the OpenCL bitstream for you. It performs the following steps
automatically:

1. Extracts the AFU from the .aocx file

2. Signs the AFU (if desired) and applies security metadata.

3. Packs the AFU back into the .aocx file.

You can create unsigned bitstreams (with security metadata only) or signed .aocx file
using the script. sign_aocx.sh calls PACSign to create the signature bitstreams.

To create the OpenCL bitstream, follow this workflow:

1. Decide which HSM manager to use: OpenSSL manager or PKCS11manager

2. Decide whether to create a signed or unsigned image

3. Source the init_env.sh script: Sourcing the init_env.sh Script on page 23

4. Generate the desired image: Creating the OpenCL Bitstream on page 24

5. Program the image to the board: Programming the Image File on page 28

3.7.1.1. Sourcing the init_env.sh Script

Source the init_env.sh script to initialize the environment for the Acceleration
Stack and OpenCL.

source <DEV install path>/init_env.sh

After you have sourced the required environment with this command, you can use the
sign_aocx.sh script to create a signed or unsigned bitstream.

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type the following command to see help documentation for the script:

$AOCL_BOARD_PACKAGE_ROOT/linux64/libexec/sign_aocx.sh -h

The command above produces the following help output:

The script assumes the PACsign and Intel Acceleration Stack environment is
setup. If not run the command : <stack_installation_path>/init_env.sh

******USAGE******:
1) For creating signed aocx run command :
./sign_aocx.sh [[[-H hsm_manager] [-i input_file] [-r rootpublickey][-k
cskkey] [-o output_file]]]| [-h]]
2) For creating unsigned images run command :
./sign_aocx.sh [[[-H hsm_manager] [-i file] [-r NULL] [-k NULL] [-o
output_file]

Command arguments:

• -H specifies the name of the HSM. Intel provides the pkcs11_manager and
openssl_manager HSMs. You can also specify a custom HSM.

• -i specifies the input .aocx file or the path to the input .aocx file.

• -r specifies the root public key or the path to it.

• -k specifies the code signing key or the path to it.

• -o specifies the output filename you would like to create.

• -h displays the help text above.

If you would like to create an unsigned .aocx file, specify NULL as the root key (-r)
and code signing key (-k) arguments.

You can run the script from any location by providing its path as shown above.

3.7.1.2. Creating the OpenCL Bitstream

Follow one of the four examples below, depending on which HSM you are using and
whether the image is to be signed.

3.7.1.2.1. Example: Creating a Signed .aocx File Using OpenSSL Manager

Command syntax:

$AOCL_BOARD_PACKAGE_ROOT/linux64/libexec/sign_aocx.sh -H openssl_manager \
-i <path_to_input_file/input_filename.aocx> -r <rootpublickey.pem> \
 -k <cskkey.pem> -o <path_to_output_file/output_filename.aocx>

Example output, signing vector_add.aocx:

$ $AOCL_BOARD_PACKAGE_ROOT/linux64/libexec/sign_aocx.sh -H openssl_manager \
-i vector_add.aocx -r ../openssl_keys_1_2_1/key_pr_root_public_key.pem \
-k ../openssl_keys_1_2_1/key_pr_csk2_public_key.pem -o signed_06_vector.aocx

The script assumes the PACsign and Intel Acceleration Stack environment is
setup. If not run the command : <stack_installation_path>/init_env.sh
hsm_manager=openssl_manager
aocx filename/path=vector_add.aocx
root_public_key=../openssl_keys_1_2_1/key_pr_root_public_key.pem
csk_public_key=../openssl_keys_1_2_1/key_pr_csk2_public_key.pem
output filename/path=signed_06_vector.aocx

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

openssl hsm_manager_options=openssl_manager
input path =.
input filename =vector_add.aocx
output path =.
output filename =signed_06_vector.aocx
Extracted the filename as signed_06_vector
1. Extracted the bin from the aocx
2. Extracted the gzip compressed GBS file from the .bin
3. Uncompressed .gz it to get the GBS file
Initiating PACSign tool to sign the GBS. This process will take a couple of
minutes...
Creating signed aocx file by signing the provided keys
2020-01-06 16:08:20,125 - PACSign.log - WARNING - Bitstream is already signed -
removing signature blocks
4. Signed the GBS
5. Compressed the gbs file
6. Added the signed gzip file to fpga.bin
7. Added the fpga.bin file back into aocx file
The signed file signed_06_vector.aocx has been generated. Use the command aocl
program <device_name> <filename>.aocx to program it on the FPGA card

The following message indicates that your output signed bitstream is successfully
created:

The signed file <output_filename>.aocx has been generated. Use the command aocl
program <device_name> <filename>.aocx to program it on the FPGA card

3.7.1.2.2. Example: Creating an Unsigned .aocx File Using OpenSSL Manager

Command syntax:

$AOCL_BOARD_PACKAGE_ROOT/linux64/libexec/sign_aocx.sh -H openssl_manager \
-i <path_to_input_file/input_filename.aocx> -r NULL -k NULL \
-o <path_to_output_file/output_filename.aocx>

Because no root key or code signing key is provided, the script asks if you would like
to create unsigned bitstream, as shown below. Type Y to accept an unsigned
bitstream.

No root key specified. Generate unsigned bitstream? Y = yes, N = no: Y
No CSK specified. Generate unsigned bitstream? Y = yes, N = no: Y

Example output:

$ $AOCL_BOARD_PACKAGE_ROOT/linux64/libexec/sign_aocx.sh -H openssl_manager \
-i vector_add.aocx -r NULL -k NULL -o unsigned_vector_add.aocx

The script assumes the PACsign and Intel Acceleration Stack environment is
setup. If not run the command : <stack_installation_path>/init_env.sh
hsm_manager=openssl_manager
aocx filename/path=vector_add.aocx
root_public_key=NULL
csk_public_key=NULL
output filename/path=unsigned_vector_add.aocx
null=1
openssl hsm_manager_options=openssl_manager
input path =.
input filename =vector_add.aocx
output path =.
output filename =unsigned_vector_add.aocx
Extracted the filename as unsigned_vector_add
1. Extracted the bin from the aocx
2. Extracted the gzip compressed GBS file from the .bin
3. Uncompressed .gz it to get the GBS file
Initiating PACSign tool to sign the GBS. This process will take a couple of
minutes...

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating unsigned aocx file by signing a NULL key
No root key specified. Generate unsigned bitstream? Y = yes, N = no: Y
No CSK specified. Generate unsigned bitstream? Y = yes, N = no: Y
2020-01-13 17:57:17,052 - PACSign.log - WARNING - Bitstream is already signed -
removing signature blocks
4. Signed the GBS
5. Compressed the gbs file
6. Added the signed gzip file to fpga.bin
7. Added the fpga.bin file back into aocx file
The signed file unsigned_vector_add.aocx has been generated. Use the command
aocl program <device_name> <filename>.aocx to program it on the FPGA card

3.7.1.2.3. Example: Creating a Signed .aocx File Using PKCS11 Manager

Command syntax:

$AOCL_BOARD_PACKAGE_ROOT/linux64/libexec/sign_aocx.sh -H pkcs11_manager \
-i <path_to_input_file/input_filename.aocx> -r <rootpublickey_name> \
-k <csk_name> -o <path_to_output_file/output_filename.aocx>

PKCS11 Manager gets the keys information from a .json file. If you follow the
instructions in HSM Key Creation, your file is named softhsm.json.

Provide the .json file path and name when the script prompts you as follows:

For using pkcs11_manager please give the .json filename with the path:

Example output:

$ $AOCL_BOARD_PACKAGE_ROOT/linux64/libexec/sign_aocx.sh -H pkcs11_manager \
-i vector_add.aocx -r root_key -k csk_1 -o pkcs_vector.aocx

The script assumes the PACsign and Intel Acceleration Stack environment is
setup. If not run the command : <stack_installation_path>/init_env.sh
hsm_manager=pkcs11_manager
aocx filename/path=vector_add.aocx
root_public_key=root_key
csk_public_key=csk_1
output filename/path=pkcs_vector.aocx

For using pkcs11_manager please give the .json filename with the path:

<filepath>/softhsm.json

pkcs hsm_manager_options=pkcs11_manager -C softhsm.json
input path =.
input filename =vector_add.aocx
output path =.
output filename =pkcs_vector.aocx
Extracted the filename as pkcs_vector
1. Extracted the bin from the aocx
2. Extracted the gzip compressed GBS file from the .bin
3. Uncompressed .gz it to get the GBS file
Initiating PACSign tool to sign the GBS. This process will take a couple of
minutes...
Creating signed aocx file by signing the provided keys
2020-01-07 13:09:41,460 - PACSign.log - WARNING - Bitstream is already signed -
removing signature blocks
4. Signed the GBS
5. Compressed the gbs file
6. Added the signed gzip file to fpga.bin
7. Added the fpga.bin file back into aocx file
The signed file pkcs_vector.aocx has been generated. Use the command aocl
program <device_name> <filename>.aocx to program it on the FPGA card

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

HSM Key Creation on page 19

3.7.1.2.4. Example: Creating an Unsigned .aocx File Using PKCS11 Manager

Command syntax:

$AOCL_BOARD_PACKAGE_ROOT/linux64/libexec/sign_aocx.sh -H pkcs11_manager \
-i <path_to_input_file/input_filename.aocx> -r NULL -k NULL \
-o <path_to_output_file/output_filename.aocx>

PKCS11 Manager gets the keys information from a .json file. If you follow the
instructions in HSM Key Creation, your file is named softhsm.json.

Provide the .json file path and name when the script prompts you as follows:

For using pkcs11_manager please give the .json filename with the path:

Because no root key or code signing key is provided, the script asks if you would like
to create unsigned bitstream, as shown below. Type Y to accept an unsigned
bitstream.

No root key specified. Generate unsigned bitstream? Y = yes, N = no: Y
No CSK specified. Generate unsigned bitstream? Y = yes, N = no: Y

Example output:

$ $AOCL_BOARD_PACKAGE_ROOT/linux64/libexec/sign_aocx.sh -H pkcs11_manager \
-i vector_add.aocx -r NULL -k NULL -o pkcs_vector.aocx
The script assumes the PACsign and Intel Acceleration Stack environment is
setup. If not run the command : <stack_installation_path>/init_env.sh
hsm_manager=pkcs11_manager
aocx filename/path=vector_add.aocx
root_public_key=NULL
csk_public_key=NULL
output filename/path=pkcs_vector.aocx
null=1

For using pkcs11_manager please give the .json filename with the path:

<filepath>/softhsm.json

pkcs hsm_manager_options=pkcs11_manager -C softhsm.json
input path =.
input filename =vector_add.aocx
output path =.
output filename =pkcs_vector.aocx
Extracted the filename as pkcs_vector
1. Extracted the bin from the aocx
2. Extracted the gzip compressed GBS file from the .bin
gzip: temp_pkcs_vector.gbs already exists; do you wish to overwrite (y or n)? y
3. Uncompressed .gz it to get the GBS file
Initiating PACSign tool to sign the GBS. This process will take a couple of
minutes...
Creating unsigned aocx file by signing a NULL key

No root key specified. Generate unsigned bitstream? Y = yes, N = no: y
No CSK specified. Generate unsigned bitstream? Y = yes, N = no: y

2020-01-07 15:59:16,726 - PACSign.log - WARNING - Bitstream is already signed -
removing signature blocks
4. Signed the GBS
gzip: signed_pkcs_vector.gbs.gz already exists; do you wish to overwrite (y or
n)? y
5. Compressed the gbs file

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Added the signed gzip file to fpga.bin
7. Added the fpga.bin file back into aocx file
The signed file pkcs_vector.aocx has been generated. Use the command aocl
program <device_name> <filename>.aocx to program it on the FPGA card

Related Information

HSM Key Creation on page 19

3.7.1.3. Programming the Image File

After you have generated your signed or unsigned .aocx file, program it to the board
by using the following command.

aocl program <device_name> <filename>.aocx

Note: You can find the device name by running aocl diagnose command.

For more information refer to the Intel Programmable Acceleration Card with Intel
Arria 10 GX FPGA Quick Start User Guide or the OpenCL on Intel Programmable
Acceleration Card with Intel Arria 10 GX FPGA Quick Start User Guide.

Related Information

• Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration
Card with Intel Arria 10 GX FPGA

• OpenCL on Intel Programmable Acceleration Card with Intel Arria 10 GX FPGA
Quick Start User Guide

3.8. Creating a CSK ID Cancellation Bitstream

To cancel a CSK ID on an Intel FPGA PAC, you must use PACSign to create a CSK ID
cancellation bitstream. To do this, you must specify the type CANCEL, select the
appropriate HSM manager and root key, and provide the key ID number to cancel. For
OpenSSL, the key ID used during image signing is derived from the CSK filename. For
PKCS11, the key ID used during image signing is extracted from the
configuration .json.

1. Create a cancellation bitstream.

Using OpenSSL:

[PACSign_Demo]$ PACSign AFU -t CANCEL -H openssl_manager \
-r key_pr_root_public_key.pem -d 1 -o ssl_csk1_cancel.gbs

Using PKCS11:

[PACSign_Demo]$ PACSign AFU -t CANCEL -H pkcs11_manager -C softhsm.json \
-r root_key -d 1 -o hsm_csk1_cancel.gbs

2. Program the CSK ID cancellation on the Intel FPGA PAC using the fpgasupdate
tool.

$ sudo fpgasupdate ssl_csk1_cancel.gbs b2:00.0

CSK ID cancellation bitstreams are only valid on Intel FPGA PACs that have been
programmed with the corresponding root entry hash bitstream. After you program
a CSK ID cancellation bitstream, you must power cycle the Intel FPGA PAC.

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

28

https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#xxd1571855653400
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#xxd1571855653400
https://www.intel.com/content/www/us/en/programmable/documentation/fvf1521490619217.html#gji1513206065498
https://www.intel.com/content/www/us/en/programmable/documentation/fvf1521490619217.html#gji1513206065498
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.9. PACSign PKCS11 Manager *.json Reference

The PACSign PKCS11 Manager uses a *.json file that stores information on how to
interact with your HSM.

It contains information specific to your HSM, as well as a description of the token and
keys that you created for use with PACSign. The PKCS11 examples in this chapter use
softhsm.json, which contains the following:

{
 "cryptoki_version": [2, 40],
 "library_version": [2, 5],
 "platform-name" : "DCP",
 "lib_path" : “/usr/local/lib/softhsm/libsofthsm2.so”,
 "curve": "secp256r1",
 "token": {
 "label": "pac-hsm",
 "user_password": "pac-afu-signer",
 "keys":
 [
 {
 "label": "root_key",
 "key_id": "0",
 "type": "PR",
 "permissions": "0xFFFFFFFF",
 "csk_id": "0xFFFFFFFF",
 "is_root": true
 },
 {
 "label": "csk_1",
 "key_id": "1",
 "type": "PR",
 "permissions": "0x4",
 "csk_id": "0x1",
 "is_root": false
 },
 {
 "label": "csk_2",
 "key_id": "2",
 "type": "PR",
 "permissions": "0x4",
 "csk_id": "0x2",
 "is_root": false
 }
]
 }
}

The cryptoki_version and library_version information is determined by your
HSM and can be reported by pkcs11-tool:

[PACSign_Demo]$ pkcs11-tool --module=/usr/local/lib/softhsm/libsofthsm2.so -I

Output:

Cryptoki version 2.40
Manufacturer SoftHSM
Library Implementation of PKCS11 (ver 2.5)
Using slot 0 with a present token (0x55eb4b4e)

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• platform-name: Always set to DCP.

• lib_path: Your HSM software library installation determines this path.

• curve: Always set to secp256r1 because this is the only elliptic curve currently
supported by the BMC.

• The token entry contains:

— label: determined when you initialize the token in your HSM

— user_password: determined when you initialize the token in your HSM

— keys: lists the keys in the token available for use by PACSign

• Within the key field are:

— label: determined when you initialize the token in your HSM

— key_id: determined when you initialize the token in your HSM

Note: Each label and key_id must match what you used when you created
the key.

— type: Either PR or SR for partial reconfiguration or static region, respectively.

— permissions: Set to 0x1 for static region signing; 0x2 for BMC signing; 0x4
for partial reconfiguration region signing.

— csk_id: What PACSign uses when signing an AFU; does not need to match
the key_id field. Valid values are 0xFFFFFFFF for root keys and 0x0-0x7F
for Intel FPGA PAC D5005 code signing keys.

— is_root: Allows you to designate to PACSign the intended use of the key as
a root key or code signing key.

3.10. Creating a Custom HSM Manager

PACSign is a Python tool that uses a plugin architecture for the HSM interface.
PACSign is distributed with managers for both OpenSSL and PKCS #11. This section
describes the functionality required by PACSign from the HSM interface and shows
how to construct a plugin.

The distribution of PACSign uses the following directory structure:

├├├├hsm_managers
├ ├├├├openssl_manager
├ ├ ├├├├library
├ ├├├├pkcs11_manager
├├├├source

The top level contains PACSign.py with the generic signing code in source. The HSM
managers reside each in their own subdirectory under hsm_managers as packages.
The directory name is what is given to PACSign’s --HSM_MANAGER command-line
option. If the specific manager requires additional information, you can provide it
using the optional --HSM_config command-line option. For example, the PKCS #11
plugin requires a *.json file describing the tokens and keys available on the HSM.

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You must place each plugin that is to be supported in a subdirectory of the
hsm_managers directory. Use a descriptive name for the directory that clearly
describes the supported HSM. This subdirectory may have an __init__.py file
whose contents import the modules needed by the plugin. The names of the plugin
modules are not important to the proper functioning of PACSign.

The newly-created plugin must be able to export one attribute named HSM_MANAGER
that is invoked by PACSign with an optional configuration file name provided on the
command-line. Invocation of HSM_MANAGER(config_file) returns a class with
certain methods exposed, which are described in later sections.

Current implementations of HSM_MANAGER define it as a Python class object. The
initialization function of the class reads and parses the configuration file (if present)
and performs HSM initialization. For the PKCS #11 implementation, the class looks like
this:

class HSM_MANAGER(object):
 def __init__(self, cfg_file = None):
 common_util.assert_in_error(cfg_file, \
 PKCS11 HSM manager requires a configuration file")
 self.session = None
 with open(cfg_file, "r") as read_file:
 self.j_data = json.load(read_file)
 j_data = self.j_data

 lib = pkcs11.lib(j_data['lib_path'])
 token = lib.get_token(token_label=j_data['token']['label'])
 self.session = token.open(user_pin=j_data['token']['user_password'])
 self.curve = j_data['curve']

 self.ecparams = self.session.create_domain_parameters(\
 pkcs11.KeyType.EC, {pkcs11.Attribute: \
 pkcs11.util.ec.encode_named_curve_parameters(self.curve)}, \
 local=True)

Error handling code has been omitted for clarity. This code does the following:

• Opens and parses the *.json configuration file.

• Loads the vendor-supplied PKCS #11 library into the program.

• Sets up a session with the correct token.

• Retrieves the proper elliptic curve parameters for the curve you select.

The following sections describe the required exported methods of this class.

3.10.1. HSM_MANAGER.get_public_key(public_key)

This method returns an instance of a public key that is described by ‘public_key’,
which was provided via a command-line option (--root_key or --
code_signing_key). The HSM manager must know how to properly identify the key
on the HSM given this string.

The public key instance is required to supply the public methods described in the
sections that follow. The PKCS #11 implementation of this function,
get_public_key, is below:

def get_public_key(self, public_key):
 try:
 key_, local_key = self.get_key(public_key, ObjectClass.PUBLIC_KEY)
 key_ = key_[Attribute.EC_POINT]

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 except pkcs11.NoSuchKey:
 pass # No key found
 except pkcs11.MultipleObjectsReturned:
 pass # Multiple keys found
 return _PUBLIC_KEY(key_[3:], local_key)

3.10.1.1. PUBLIC_KEY.get_X_Y()

This function returns a common_util.BYTE_ARRAY() that contains the elliptic curve
point associated with the key. The returned value should be X concatenated with Y,
each with the proper number of bytes. For our implementation, each of X and Y are 32
bytes (256 bits) because secp256r1 curve parameters are required.

3.10.1.2. PUBLIC_KEY.get_permission()

Intel FPGA PAC keys have associated permissions. This function returns an integer
that corresponds to the assigned key permissions. For Intel FPGA PACs, all root key
permissions must be the constant 0xFFFFFFFF. For code signing keys, the
permissions are described below.

Table 5. Key Permissions

Value Name Permission

1 SIGN_SR Sign the FIM or Static Region

4 SIGN_PR Sign the PR Region or AFU

3.10.1.3. PUBLIC_KEY.get_ID()

Intel FPGA PACs have a laddering key mechanism that allows for cancellation of code
signing keys. This method returns the integer key ID of the specified key. The root key
ID must be the constant 0xFFFFFFFF. Root keys cannot be canceled.

Intel PAC with Intel Arria 10 GX FPGA AFU code signing key IDs must be in the range
0 to 127 (7-bit unsigned).

3.10.1.4. PUBLIC_KEY.get_content_type()

Code signing keys and root keys can be restricted to signing only certain types of
content. For instance, there are separate root keys for PR, SR, and BMC bitstreams as
well as corresponding code signing keys. This method should return the bitstream
type associated with this key, and must be one of {FIM, SR, BBS, BMC, BMC_FW,
AFU, PR, or GBS}.

3.10.2. HSM_MANAGER.sign(data, key)

This method uses the key provided to generate an ECDSA signature over the provided
data.

The return value of this method is a common_util.BYTE_ARRAY() containing the R
and S values of the signature concatenated. PACSign only signs hashes, so the length
of the data to be signed will be a fixed-length 32 byte array.

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.10.3. Signing Operation Flow

A PACSign command that invokes the PKCS #11 manager plugin initializes it with the
configuration file name.

PACSign performs insertion of authentication blocks into the bitstream, signed by the
root and code signing keys. The resultant signed bitstream is written to the specified
output file.

PACSign requests that the HSM manager retrieve the public key X and Y values for the
root key and the code signing key. The HSM manager returns the R and S signature
over PACSign-provided 256-bit hash values using the root key and code signing key.
The following code snippet demonstrates how PACSign utilizes the HSM manager.

self.pub_root_key_c = self.hsm_manager.get_public_key(args.root_key)
common_util.assert_in_error(self.pub_root_key_c, \
 "Cannot retrieve root public key")
 self.pub_root_key = self.pub_root_key_c.get_X_Y()
 self.pub_root_key_perm = self.pub_root_key_c.get_permission()
 self.pub_root_key_id = self.pub_root_key_c.get_ID()
 self.pub_root_key_type = self.pub_root_key_c.get_content_type()

self.pub_CSK_c = self.hsm_manager.get_public_key(args.code_signing_key)
common_util.assert_in_error(self.pub_CSK_c != None, \
 "Cannot retrieve public CSK")
 self.pub_CSK = self.pub_CSK_c.get_X_Y()
 self.pub_CSK_perm = self.pub_CSK_c.get_permission()
 self.pub_CSK_id = self.pub_CSK_c.get_ID()
 self.pub_CSK_type = self.pub_CSK_c.get_content_type()

sha = sha256(block0.data).digest()
rs = self.hsm_manager.sign(sha, args.code_signing_key)
sha = sha256(csk_body.data).digest()
rs = self.hsm_manager.sign(sha, args.root_key)

3.11. PACSign Man Page

PACSign man page is reproduced here for convenience.

SYNOPSIS
python PACSign.py [-h] {FIM,SR,BBS,BMC,BMC_FW,AFU,PR,GBS} ...
python PACSign.py <CMD> [-h] -t {UPDATE,CANCEL,RK_256,RK_384} -H HSM_MANAGER [-
C HSM_CONFIG] [-r ROOT_KEY] [-k CODE_SIGNING_KEY] [-d CSK_ID] [-i INPUT_FILE] [-
o OUTPUT_FILE] [-y] [-v]

DESCRIPTION
PACSign is a utility designed to insert proper authentication markers on
bitstreams targeted for the PACs. To accomplish this, it uses a root key and an
optional code signing key to digitally sign the bitstreams to validate their
origin. The PACs will not accept loading bitstreams without proper
authentication.
The current PACs only support elliptical curve keys with the curve type
secp256r1 or prime256v1. PACSign is distributed with managers for both OpenSSL
and PKCS #11.

BITSTREAM TYPES
The first required argument to PACSign is the bitstream type identifier.

{SR,FIM,BBS,BMC,BMC_FW,PR,AFU,GBS}

Allowable image types. FIM and BBS are aliases for SR, BMC_FW is an alias for
BMC, and AFU and GBS are aliases for PR.

SR (FIM, BBS)

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Static FPGA image

BMC(BMC_FW)

BMC image, including firmware for some PACs

PR (AFU, GBS)

Reconfigurable FPGA image

REQUIRED OPTIONS
All bitstream types are required to include an action to be performed by
PACSign and the name and optional parameter file for a key signing module.

-t, --cert_type <type>

Values must be one of UPDATE, CANCEL, RK_256, or RK_384[^1].
`UPDATE` - add authentication data to the bitstream.
`CANCEL` - create a code signing key cancellation bitstream.
`RK_256` - create a bitstream to program a 256-bit root key to the device.
`RK_384` - create a bitstream to program a 384-bit root key to the device.
[^1]:Current PACs do not support 384-bit root keys.

-H, --HSM_manager <module>

The module name for a manager that is used to interface to an HSM. PACSign
supplies both openssl_manager and pkcs11_manager to handle keys and signing
operations.

-C, --HSM_config <cfg> (optional)

The argument to this option is passed verbatim to the specified HSM manager.
For pkcs11_manager, this option specifies a JSON file describing the PKCS #11
capable HSM's parameters.

OPTIONS
-r, --root_key <keyID>

The key identifier recognizable to the HSM manager that identifies the root key
to be used for the selected operation.

-k, --code_signing_key <keyID>

The key identifier recognizable to the HSM manager that identifies the code
signing key to be used for the selected operation.

-d, --csk_id <csk_num>

Only used for type CANCEL and is the key number of the code signing key to
cancel.

-i, --input_file <file>

Only used for UPDATE operations. Specifies the file name containing the data to
be signed.

-o, --output_file <file>

Specifies the name of the file to which the signed bitstream is to be written.

-y, --yes

Silently answer all queries from PACSign in the affirmative.

-v, --verbose

Can be specified multiple times. Increases the verbosity of PACSign. Once
enables non-fatal warnings to be displayed; twice enables progress information.
Three or more occurrences enables very verbose debugging information.

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NOTES
Different certification types require different sets of options. The table
below describes which options are required based on certification type:

UPDATE
 root_key code_signing_key csk_id input_file output_file
SR Optional[^2] Optional[^2] No Yes Yes
BMC Optional[^2] Optional[^2] No Yes Yes
PR Optional[^2] Optional[^2] No Yes Yes

CANCEL
 root_key code_signing_key csk_id input_file output_file
SR Yes No Yes No Yes
BMC Yes No Yes No Yes
PR Yes No Yes No Yes

RK_256 / RK_384[^1]
 root_key code_signing_key csk_id input_file output_file
SR Yes No No No Yes
BMC Yes No No No Yes
PR Yes No No No Yes
[^2]: For UPDATE type, both keys must be specified to produce an authenticated
bitstream. Omitting one key generates a valid, but unauthenticated bitstream
that can only be loaded on a PAC with no root key programmed for that type.

EXAMPLES
The following command will generate a root hash programming PR bitstream. The
generated file can be given to fpgasupdate to program the root hash for PR
operations into the device flash. Note that root hash programming can only be
done once on a PAC.

python PACSign.py PR -t RK_256 -o pr_rhp.bin -H openssl_manager -r
key_pr_root_public_256.pem

The following command will add authentication blocks to hello_afu.gbs signed by
both provided keys and write the result to s_hello_afu.gbs. If the input
bitstream were already signed, the old signature block is replaced with the
newly-generated block.

python PACSign.py PR -t update -H openssl_manager -i hello_afu.gbs -o
s_hello_afu.gbs -r key_pr_root_public_256.pem -k key_pr_csk0_public_256.pem

The following command will generate a code signing key cancellation bitstream
to cancel code signing key 4 for all BMC operations. CSK 4 bitstreams that
attempt to load BMC images will be rejected by the PAC.

python PACSign.py BMC -t cancel -H openssl_manager -o csk4_cancel.gbs -r
key_bmc_root_public_256.pem -d 4

3. Intel FPGA PAC Security Flow

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Using fpgasupdate

Use the fpgasupdate command to securely update the following files in flash:

• BMC firmware

• FIM images

• AFU (partial reconfiguration) images

When you call fpgasupdate the TCM orchestrates the update.

• The TCM rejects an update request if another update is currently in progress. The
TCM monitors flash write and update counts and delays an update 30 seconds if
more than 1,000 updates have occurred, and 60 seconds if more than 2,000
updates have occurred.

• The TCM stops the currently running AFU and loads the BIP from on-board flash.

• The TCM grants access only to a staging area in the on-board DDR memory, and
only for enough time for the host to write an update into the staging area.

Note: Overwriting memory contents is harmless at this point, because the
previous AFU is no longer present and the BIP has full control. The next AFU
to be loaded does not make assumptions about the contents of memory.

• The TCM then restricts all write access to ensure the update image cannot be
changed during or after the authentication process.

• If authentication is successful, the TCM copies the image from the staging area
into the appropriate interface: the BMC flash for BMC updates, the on-board flash
for FIM or AFU updates, or directly to the PR interface for an immediate execution
of the new AFU.

To use the command type:

$ sudo fpgasupdate [--log-level=<level>] file [bdf]

where the following options are as follows:

Table 6. fpgasupdate Options

Parameters Options Notes

level state, ioctl, debug, info, warning, error,
critical. Default value is state.

file The secure update file that you
program in the Intel FPGA PAC

[bdf] [ssss:]bb:dd:f, corresponding to
PCIe segment, bus, device, function.
The segment is optional; if omitted, a
segment of 0000 is assumed.

If there is only one Intel FPGA PAC in
the system, then bdf may be omitted.
In this case, fpgasupdate determines
the address automatically.

UG-20263 | 2020.03.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.1. Troubleshooting

fpgasupdate provides descriptive errors when it cannot complete the requested
operation.

When using fpgasupdate to program bitstreams created or signed with PACSign, the
tool may reject the bitstream if, for example, there was an error in the signing process
or if the signed bitstream is corrupted.

The TCM provides extended error codes to assist in troubleshooting an authentication
failure. Error codes are logged in your system messaging log, such as dmesg
or /var/syslogs. You may use the following table to decode the authentication
status and associated errors.

Table 7. Authentication Status Register Values and Error Descriptions

Authentication Status
Value

Error Name Error Description Corrective Action

32'h00000000 Block0 Magic value error Bitstream Format Error:
Block 0 bad magic number.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000001 Block0 ConLen error Bitstream Format Error:
Block 0 content length error.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32’h00000002 Block0 ConType B[7:0] > 2 Bitstream Format Error:
Block 0 content type error.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000003 Root Entry Magic Number
error

Bitstream Format Error:
Root entry bad magic
number. Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000004 Root Entry Curve Magic
value error

Bitstream Format Error:
Root entry bad magic
number. Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000005 Root Entry Permission error Root entry bad permissions.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000006 Root Entry Key ID error Bitstream Format Error:
Root entry bad key ID.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000007 Root Entry hash mismatch Bitstream Format Error:
Root entry does not match
root entry stored on card.

Ensure bitstream is properly
signed with the correct keys.

32'h00000008 CSK Entry Magic value error Bitstream Format Error: CSK
bad magic number. Indicates
bitstream corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000009 CSK Entry Curve Magic value
error

Bitstream Format Error: CSK
bad curve magic number.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

continued...

4. Using fpgasupdate

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Authentication Status
Value

Error Name Error Description Corrective Action

32'h0000000A CSK Key Canceled Authentication Error: CSK
canceled. Indicates you are
attempting to program an
image with a canceled CSK.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000B CSK Entry Permission error Authentication Error: CSK
bad permission. Indicates
bitstream corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000C CSK Entry verify ECDSA and
SHA failed

Authentication Error: CSK
signature invalid. Indicates
CSK or root entry hash
tampering.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000D Block0 Entry Magic value
error

Bitstream Format Error:
Block 0 entry bad magic
number. Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000E Block 0 Entry Curve Magic
value error

Bitstream format error:
Block 0 entry bad curve
magic number. Indicates
bitstream corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000F Block0 Entry verify ECDSA
and SHA failed

Authentication Error: Block 0
entry signature invalid. May
indicate image tampering.

Ensure bitstream is properly
signed with the correct keys.

32'h00000010 Block1 Entry Magic Value
Error

Bitstream Format Error:
Block 1 entry bad magic
number. Indicates bitstream
corruption.

Program root entry hash
bitstream.

32'h00000011 BIP PR error TCM unable to load BIP. Contact Intel support.

32'h00000012 BIP Block 0/1 error Bitstream format error: BIP
does not recognize Block0/
Block1 entry

Ensure bitstream is properly
signed with the correct keys.

32'h00000013 BIP Start error TCM unable to load and start
BIP.

Contact Intel support.

32'h00000014 Host bitstream download
timeout

Host loading of bitstream did
not complete in time
expected by TCM.

Retry update operation.

32'h00000015 Host canceled update Update operation canceled
by host.

Retry update operation.

32'h00000016 Root Entry Hash bitstream
not programmed for RSU
and Cancellation

You attempted to program a
key cancellation bitstream
without first programming a
root entry hash bitstream.

Program a root entry hash
before attempting to
program a key cancellation
bitstream.

8'h00000017 KEY hash has been
programmed for KEY hash
programming certificate

Authentication Error:
Attempt to program root
entry hash when the root
entry hash bitstream has
already been programmed.

You may only program root
entry hash bitstream one
time.

32'h00000018 Payload SHA Invalid Authentication Error:
Payload SHA mismatch. May
indicate tampering of the
root key.

Verify correctness of
bitstream; may need to
resign.

32'h00000019 Host BMC command
blacklisted

TCM filtered a disallowed
command from the host to
the Intel FPGA PAC BMC.

Do not issue the failing
command to the BMC.

continued...

4. Using fpgasupdate

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Authentication Status
Value

Error Name Error Description Corrective Action

32'h0000001A Host response timeout on
BMC command

The host did not respond in
time after a BMC command.

Retry BMC command
operation.

32'h0000001B BMC timeout on request The BMC did not respond in
time to acknowledge a
command.

Retry command.

32’h0000001C BMC timeout sending
response

The BMC did not respond in
time after acknowledging a
command.

Power-cycle Intel FPGA PAC
and retry command.

32’h0000001d Host BMC response timeout
on response acknowledge

The Host BMC did not
respond in time to the Intel
FPGA PAC BMC.

Retry command.

32’h0000001e Flash open error The TCM experienced an
error accessing on-board
flash.

Contact Intel support.

32’h0000001f Flash read error The TCM experienced an
error accessing on-board
flash.

Contact Intel support.

32’h00000020 BIP load error The BIP encountered an
error during loading.

Retry update operation.

32’h00000021 PR reset timeout The TCM encountered a
timeout when attempting to
reset the PR region.

Power cycle the PAC.

32’h00000022 BMC update prohibited after
PR

The TCM blocks BMC
updates after an AFU has
been loaded.

Power cycle the PAC and
attempt BMC update before
loading an AFU.

32’h00000023 Flash update prohibited after
PR

The TCM blocks a flash
update after an AFU has
been loaded.

Power cycle the PAC and
attempt update before
loading an AFU.

32’h00000024 BMC update delayed The TCM refused the BMC
update operation due to a
high update count and a
short time since the last
update operation.

Retry update operation at a
later time (up to 120s).

32’h00000025 Flash update delayed The TCM refused the update
operation due to a high
update count and a short
time since the last update
operation.

Retry update operation at a
later time (up to 120s).

32’h00000026 Bad BMC command length The TCM filtered a command
to the BMC due to an
improper command length.

Format the BMC command
correctly.

32’h00000027 Bad BMC response length The TCM filtered a BMC
response due to an improper
length.

Format the BMC response
correctly.

32’h00000028 PR prohibited from factory
image

The TCM reverted to factory
image and an attempt to
load an AFU was made.

Update the Intel FPGA FIM
image.

32’h00000029 CSK bad CSK ID Authentication Error: CSK ID
is an invalid value.

Verify correctness of
bitstream; may need to
resign.

continued...

4. Using fpgasupdate

UG-20263 | 2020.03.06

Send Feedback Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Authentication Status
Value

Error Name Error Description Corrective Action

32’hDD00xxxx BIP internal error code The BIP experienced an
error.

Contact Intel support.

32’hEE00xxxx PR IP internal error code The AFU experienced an
error.

Contact AFU vendor support.

32’hFFFFFFFF No Error No Error

4. Using fpgasupdate

UG-20263 | 2020.03.06

Security User Guide: Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA

Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Document Revision History

Document
Version

Changes

2020.03.06 Initial production release.

UG-20263 | 2020.03.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20Programmable%20Acceleration%20Card%20with%20Intel%20Arria%2010%20GX%20FPGA%20(UG-20263%202020.03.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

	Security User Guide: Intel Programmable Acceleration Card with Intel Arria 10 GX FPGA
	Contents
	1. Overview
	1.1. About This Document
	1.2. Prerequisites
	1.3. Related Documentation
	1.4. Glossary

	2. Intel FPGA PAC Security Features
	2.1. Secure Image Updates
	2.2. Anti-Rollback Capability
	2.3. Key Management
	2.4. Authentication
	2.5. Encryption

	3. Intel FPGA PAC Security Flow
	3.1. Installing PACSign
	3.2. PACSign Tool
	3.3. Creating Unsigned Images
	3.4. Using an HSM Manager
	3.5. Creating Keys
	3.5.1. OpenSSL Key Creation
	3.5.2. HSM Key Creation

	3.6. Root Entry Hash Bitstream Creation
	3.7. Signing Images
	3.7.1. Creating OpenCL* Bitstreams
	3.7.1.1. Sourcing the init_env.sh Script
	3.7.1.2. Creating the OpenCL Bitstream
	3.7.1.2.1. Example: Creating a Signed .aocx File Using OpenSSL Manager
	3.7.1.2.2. Example: Creating an Unsigned .aocx File Using OpenSSL Manager
	3.7.1.2.3. Example: Creating a Signed .aocx File Using PKCS11 Manager
	3.7.1.2.4. Example: Creating an Unsigned .aocx File Using PKCS11 Manager

	3.7.1.3. Programming the Image File

	3.8. Creating a CSK ID Cancellation Bitstream
	3.9. PACSign PKCS11 Manager *.json Reference
	3.10. Creating a Custom HSM Manager
	3.10.1. HSM_MANAGER.get_public_key(public_key)
	3.10.1.1. PUBLIC_KEY.get_X_Y()
	3.10.1.2. PUBLIC_KEY.get_permission()
	3.10.1.3. PUBLIC_KEY.get_ID()
	3.10.1.4. PUBLIC_KEY.get_content_type()

	3.10.2. HSM_MANAGER.sign(data, key)
	3.10.3. Signing Operation Flow

	3.11. PACSign Man Page

	4. Using fpgasupdate
	4.1. Troubleshooting

	5. Document Revision History

